A Group of Orthogonal Basis Based on UE-Bézier Basis

Mei-e Fang, Guozhao Wang, Weiyin Ma
{"title":"A Group of Orthogonal Basis Based on UE-Bézier Basis","authors":"Mei-e Fang, Guozhao Wang, Weiyin Ma","doi":"10.1109/ISVD.2011.32","DOIUrl":null,"url":null,"abstract":"UE-Bezier (unified and extended Bezier) basis is the unified form of Bezier-like bases, including polynomial Bezier basis, trigonometric polynomial and hyperbolic polynomial Bezier basis. Similar to the original Bezier-like bases, UE-Bezier basis functions are not orthogonal. In this paper, a group of orthogonal basis is constructed based on UE-Bezier basis. The transformation matrices between UE-Bezier basis and the proposed orthogonal basis are also solved. As an example, we apply the proposed orthogonal basis and the transformation into the approximation of an inverse function by an UE-Bezier polynomial.","PeriodicalId":152151,"journal":{"name":"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering","volume":"19 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Eighth International Symposium on Voronoi Diagrams in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVD.2011.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

UE-Bezier (unified and extended Bezier) basis is the unified form of Bezier-like bases, including polynomial Bezier basis, trigonometric polynomial and hyperbolic polynomial Bezier basis. Similar to the original Bezier-like bases, UE-Bezier basis functions are not orthogonal. In this paper, a group of orthogonal basis is constructed based on UE-Bezier basis. The transformation matrices between UE-Bezier basis and the proposed orthogonal basis are also solved. As an example, we apply the proposed orthogonal basis and the transformation into the approximation of an inverse function by an UE-Bezier polynomial.
基于ue - bsamizier基的一组正交基
统一扩展贝塞尔基是类贝塞尔基的统一形式,包括多项式贝塞尔基、三角多项式贝塞尔基和双曲多项式贝塞尔基。与最初的类贝塞尔基类似,ue -贝塞尔基函数不是正交的。本文在UE-Bezier基的基础上构造了一组正交基。求解了UE-Bezier基与所提出的正交基之间的变换矩阵。作为一个例子,我们将所提出的正交基和变换应用到反函数的UE-Bezier多项式逼近中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信