IoT and AI-enabled Physical Distance Monitoring Application to Prevent COVID19 Transmission

Mohammad Dwipa Furqan, A. Achmad, Wardi, M. Niswar
{"title":"IoT and AI-enabled Physical Distance Monitoring Application to Prevent COVID19 Transmission","authors":"Mohammad Dwipa Furqan, A. Achmad, Wardi, M. Niswar","doi":"10.1109/CyberneticsCom55287.2022.9865290","DOIUrl":null,"url":null,"abstract":"During COVID19 pandemic, people are encouraged to practice physical distancing at least 1 meter when interacting with other people to prevent the spread of the COVID19. This study aims to develop a system that can monitor the physical distancing and track physical contact in a room using internet of things (IoT) and artificial intelligent technology. The system consists of a small single-board computer (Raspberry Pi), webcam, and web application displaying physical contact information. The system uses YOLO algorithms to detect the human object and euclidean distance formula to determine the distance between human objects. We evaluated the performance of YOLOv3 and YOLOv3-tiny running on Raspberry Pi. The evaluation result shows that YOLOv3 consumes more CPU resources than YOLOv3-tiny but has better accuracy in detecting human objects. YOLOv3-tiny can process images and detect objects faster than YOLOv3.","PeriodicalId":178279,"journal":{"name":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberneticsCom55287.2022.9865290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

During COVID19 pandemic, people are encouraged to practice physical distancing at least 1 meter when interacting with other people to prevent the spread of the COVID19. This study aims to develop a system that can monitor the physical distancing and track physical contact in a room using internet of things (IoT) and artificial intelligent technology. The system consists of a small single-board computer (Raspberry Pi), webcam, and web application displaying physical contact information. The system uses YOLO algorithms to detect the human object and euclidean distance formula to determine the distance between human objects. We evaluated the performance of YOLOv3 and YOLOv3-tiny running on Raspberry Pi. The evaluation result shows that YOLOv3 consumes more CPU resources than YOLOv3-tiny but has better accuracy in detecting human objects. YOLOv3-tiny can process images and detect objects faster than YOLOv3.
支持物联网和人工智能的物理距离监控应用,防止covid - 19传播
在covid - 19大流行期间,鼓励人们在与其他人互动时保持至少1米的身体距离,以防止covid - 19的传播。该研究旨在利用物联网(IoT)和人工智能技术开发一种可以监控房间内物理距离和跟踪物理接触的系统。该系统由小型单板计算机(树莓派)、网络摄像头和显示物理接触信息的web应用程序组成。该系统采用YOLO算法检测人体目标,欧几里得距离公式确定人体目标之间的距离。我们评估了YOLOv3和YOLOv3-tiny在Raspberry Pi上运行的性能。评估结果表明,YOLOv3比YOLOv3-tiny消耗更多的CPU资源,但在检测人体目标时具有更好的准确性。YOLOv3-tiny可以比YOLOv3更快地处理图像和检测物体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信