A globally stable attractor that is locally unstable everywhere

Phanindra Tallapragada, S. Sudarsanam
{"title":"A globally stable attractor that is locally unstable everywhere","authors":"Phanindra Tallapragada, S. Sudarsanam","doi":"10.1063/1.5016214","DOIUrl":null,"url":null,"abstract":"We construct two examples of invariant manifolds that despite being locally unstable at every point in the transverse direction are globally stable. Using numerical simulations we show that these invariant manifolds temporarily repel nearby trajectories but act as global attractors. We formulate an explanation for such global stability in terms of the `rate of rotation' of the stable and unstable eigenvectors spanning the normal subspace associated with each point of the invariant manifold. We discuss the role of this rate of rotation on the transitions between the stable and unstable regimes.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5016214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We construct two examples of invariant manifolds that despite being locally unstable at every point in the transverse direction are globally stable. Using numerical simulations we show that these invariant manifolds temporarily repel nearby trajectories but act as global attractors. We formulate an explanation for such global stability in terms of the `rate of rotation' of the stable and unstable eigenvectors spanning the normal subspace associated with each point of the invariant manifold. We discuss the role of this rate of rotation on the transitions between the stable and unstable regimes.
一个全局稳定的吸引子到处都是局部不稳定的
我们构造了两个不变流形的例子,尽管在横向上的每一点都是局部不稳定的,但它们是全局稳定的。通过数值模拟,我们表明这些不变流形暂时排斥附近的轨迹,但充当全局吸引子。我们用稳定和不稳定特征向量的“旋转速率”来解释这种全局稳定性,这些特征向量横跨与不变流形的每个点相关的正规子空间。我们讨论了这个旋转速率在稳定和不稳定状态之间的转换中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信