Link Flow Estimation for Parallel Transportation Management

Qiang Li, Runmeng Wang
{"title":"Link Flow Estimation for Parallel Transportation Management","authors":"Qiang Li, Runmeng Wang","doi":"10.1109/DTPI55838.2022.9998959","DOIUrl":null,"url":null,"abstract":"Link flow is critical to investigate the traffic state in parallel transportation management and thus has been object of growing interest in the past few years. However, tradition estimation methods mostly use partial link counts only and convert this problem into observability studies. This paper proposed a new mathematical model based on both partial link counts and the Automatic Vehicle Identification data. This approach is tested using the actual traffic data from the city of Chengdu, China. The results indicate it is feasible to combine these two data sources to estimate the total link flows.","PeriodicalId":409822,"journal":{"name":"2022 IEEE 2nd International Conference on Digital Twins and Parallel Intelligence (DTPI)","volume":"294 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Digital Twins and Parallel Intelligence (DTPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DTPI55838.2022.9998959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Link flow is critical to investigate the traffic state in parallel transportation management and thus has been object of growing interest in the past few years. However, tradition estimation methods mostly use partial link counts only and convert this problem into observability studies. This paper proposed a new mathematical model based on both partial link counts and the Automatic Vehicle Identification data. This approach is tested using the actual traffic data from the city of Chengdu, China. The results indicate it is feasible to combine these two data sources to estimate the total link flows.
并行运输管理中的链路流量估计
在并行交通管理中,链路流是研究交通状态的关键,近年来已成为人们日益关注的问题。然而,传统的估计方法大多只使用部分链路计数,并将其转化为可观测性研究。本文提出了一种基于部分路段数和车辆自动识别数据的数学模型。该方法使用来自中国成都市的实际交通数据进行了测试。结果表明,将这两个数据源结合起来估算总链路流量是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信