{"title":"Variable Window and Deadline-Aware Sensor Attack Detector for Automotive CPS","authors":"Francis Akowuah, Kenneth Fletcher, Fanxin Kong","doi":"10.1109/ISORC58943.2023.00018","DOIUrl":null,"url":null,"abstract":"Cyber-physical systems (CPS) are susceptible to physical attacks, and researchers are exploring ways to detect them. One method involves monitoring the system for a set duration, known as the time-window, and identifying residual errors that exceed a predetermined threshold. However, this approach means that any sensor attack alert can only be triggered after the time-window has elapsed. The length of the time-window affects the detection delay and the likelihood of false alarms, with a shorter time-window leading to quicker detection but a higher false positive rate, and a longer time-window resulting in slower detection but a lower false positive rate.While researchers aim to choose a fixed time-window that balances a low false positive rate and short detection delay, this goal is difficult to attain due to a trade-off between the two. An alternative solution proposed in this paper is to have a variable time-window that can adapt based on the current state of the CPS. For instance, if the CPS is heading towards an unsafe state, it is more crucial to reduce the detection delay (by decreasing the time-window) rather than reducing the false alarm rate, and vice versa. The paper presents a sensor attack detection framework that dynamically adjusts the time-window, enabling attack alerts to be triggered before the system enters dangerous regions, ensuring timely detection. This framework consists of three components: attack detector, state predictor, and window adaptor. We have evaluated our work using real-world data, and the results demonstrate that our solution improves the usability and timeliness of time-window-based attack detectors.","PeriodicalId":281426,"journal":{"name":"2023 IEEE 26th International Symposium on Real-Time Distributed Computing (ISORC)","volume":"23 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 26th International Symposium on Real-Time Distributed Computing (ISORC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISORC58943.2023.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cyber-physical systems (CPS) are susceptible to physical attacks, and researchers are exploring ways to detect them. One method involves monitoring the system for a set duration, known as the time-window, and identifying residual errors that exceed a predetermined threshold. However, this approach means that any sensor attack alert can only be triggered after the time-window has elapsed. The length of the time-window affects the detection delay and the likelihood of false alarms, with a shorter time-window leading to quicker detection but a higher false positive rate, and a longer time-window resulting in slower detection but a lower false positive rate.While researchers aim to choose a fixed time-window that balances a low false positive rate and short detection delay, this goal is difficult to attain due to a trade-off between the two. An alternative solution proposed in this paper is to have a variable time-window that can adapt based on the current state of the CPS. For instance, if the CPS is heading towards an unsafe state, it is more crucial to reduce the detection delay (by decreasing the time-window) rather than reducing the false alarm rate, and vice versa. The paper presents a sensor attack detection framework that dynamically adjusts the time-window, enabling attack alerts to be triggered before the system enters dangerous regions, ensuring timely detection. This framework consists of three components: attack detector, state predictor, and window adaptor. We have evaluated our work using real-world data, and the results demonstrate that our solution improves the usability and timeliness of time-window-based attack detectors.