Music curator recommendations using linked data

K. Kitaya, Hung-Hsuan Huang, K. Kawagoe
{"title":"Music curator recommendations using linked data","authors":"K. Kitaya, Hung-Hsuan Huang, K. Kawagoe","doi":"10.1109/INTECH.2012.6457799","DOIUrl":null,"url":null,"abstract":"People who collect content by human power and create criticism are called curators. Recently, the number of music curators has been increasing. However, it is often difficult to discover a music curator suited to the user's personal taste. Fortunately, linked data, which involve a large network structure to link data, exist. Using a Linked Data Semantic Distance algorithm that utilized linked data, Passant calculated the distance between different pieces of music. In this paper, we propose a method for recommending a music curator who suits the user's taste using linked data. A link structure is formed using the listening history of the user, the music curator's musical criticism data, and music information data. We calculate the distance between the user and the music curator using the linked data.","PeriodicalId":369113,"journal":{"name":"Second International Conference on the Innovative Computing Technology (INTECH 2012)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Second International Conference on the Innovative Computing Technology (INTECH 2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTECH.2012.6457799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

People who collect content by human power and create criticism are called curators. Recently, the number of music curators has been increasing. However, it is often difficult to discover a music curator suited to the user's personal taste. Fortunately, linked data, which involve a large network structure to link data, exist. Using a Linked Data Semantic Distance algorithm that utilized linked data, Passant calculated the distance between different pieces of music. In this paper, we propose a method for recommending a music curator who suits the user's taste using linked data. A link structure is formed using the listening history of the user, the music curator's musical criticism data, and music information data. We calculate the distance between the user and the music curator using the linked data.
音乐策展人推荐使用关联数据
通过人力收集内容并制造批评的人被称为“策展人”。最近,音乐策展人的数量不断增加。然而,通常很难找到适合用户个人品味的音乐策展人。幸运的是,链接数据是存在的,它涉及到一个大的网络结构来链接数据。Passant使用关联数据语义距离算法来计算不同音乐片段之间的距离。在本文中,我们提出了一种使用关联数据推荐适合用户口味的音乐策展人的方法。使用用户的收听历史、音乐馆长的音乐评论数据和音乐信息数据形成链接结构。我们使用关联数据计算用户和音乐管理员之间的距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信