Artificial Neural Network Analysis of DNA Microarray-based Prostate Cancer Recurrence

Leif E. Peterson, M. Ozen, Halime Erdem, Andrew Amini, L. Gomez, C. Nelson, M. Ittmann
{"title":"Artificial Neural Network Analysis of DNA Microarray-based Prostate Cancer Recurrence","authors":"Leif E. Peterson, M. Ozen, Halime Erdem, Andrew Amini, L. Gomez, C. Nelson, M. Ittmann","doi":"10.1109/CIBCB.2005.1594929","DOIUrl":null,"url":null,"abstract":"DNA microarray-based gene expression profiles have been established for a variety of adult cancers. This paper addresses application of an artificial neural network (ANN) with leave-one-out testsing and 8-fold cross-validation for analyzing DNA microarray data to identify genes predictive of recurrence after prostatectomy. Among 725 genes screened for ANN input, a 16-gene model resulted in 99-100% diagnostic sensitivity and specificity: DGCR5, FLJ10618, RIS1, PRO1855, ABCB9, AK057203, GOLGA5, HARS, AK024152, HEP27, PPIA, SNRPF, SULT1A3, SECTM1, EIF4EBP1, and S71435. Genes identified with ANN that are prognostic of prostate cancer recurrence may be either causal for prostate cancer or secondary to the disease. Nevertheless, the genes identified may be confirmed in the future to be markers of early detection and/or therapy.","PeriodicalId":330810,"journal":{"name":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2005.1594929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

DNA microarray-based gene expression profiles have been established for a variety of adult cancers. This paper addresses application of an artificial neural network (ANN) with leave-one-out testsing and 8-fold cross-validation for analyzing DNA microarray data to identify genes predictive of recurrence after prostatectomy. Among 725 genes screened for ANN input, a 16-gene model resulted in 99-100% diagnostic sensitivity and specificity: DGCR5, FLJ10618, RIS1, PRO1855, ABCB9, AK057203, GOLGA5, HARS, AK024152, HEP27, PPIA, SNRPF, SULT1A3, SECTM1, EIF4EBP1, and S71435. Genes identified with ANN that are prognostic of prostate cancer recurrence may be either causal for prostate cancer or secondary to the disease. Nevertheless, the genes identified may be confirmed in the future to be markers of early detection and/or therapy.
基于DNA微阵列的前列腺癌复发人工神经网络分析
基于DNA微阵列的基因表达谱已经建立了多种成人癌症。本文将人工神经网络(ANN)与留一检验和8倍交叉验证相结合,用于分析DNA微阵列数据,以识别前列腺切除术后复发的预测基因。在筛选的725个神经网络输入基因中,一个16基因模型的诊断敏感性和特异性为99-100%:DGCR5、FLJ10618、RIS1、PRO1855、ABCB9、AK057203、GOLGA5、HARS、AK024152、HEP27、PPIA、SNRPF、SULT1A3、SECTM1、EIF4EBP1和S71435。与ANN鉴定的前列腺癌复发预后基因可能是前列腺癌的病因,也可能是继发于前列腺癌。尽管如此,鉴定出的基因可能在未来被确认为早期发现和/或治疗的标志。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信