An adaptive fuzzy system for control and clustering of arbitrary data patterns

S. C. Newton, S. Mitra
{"title":"An adaptive fuzzy system for control and clustering of arbitrary data patterns","authors":"S. C. Newton, S. Mitra","doi":"10.1109/FUZZY.1992.258642","DOIUrl":null,"url":null,"abstract":"A modular, unsupervised neural network architecture is described. It can be used for data clustering and classification. The adaptive fuzzy leader clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns online in a stable and efficient manner. The system consists of a fuzzy k-means learning rule embedded within a control structure similar to that found in the adaptive resonance theory (ART-1) network. AFLC adaptively clusters analog inputs into classes without prior knowledge of the entire data set or of the number of clusters present in the data. The classification of an input takes place in a two-stage process; a simple competitive stage and a euclidean metric comparison stage. The AFLC algorithm and its operating characteristics are described. The algorithm is compared to an adaptive Bayesian classifier for some real data.<<ETX>>","PeriodicalId":222263,"journal":{"name":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1992.258642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

A modular, unsupervised neural network architecture is described. It can be used for data clustering and classification. The adaptive fuzzy leader clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns online in a stable and efficient manner. The system consists of a fuzzy k-means learning rule embedded within a control structure similar to that found in the adaptive resonance theory (ART-1) network. AFLC adaptively clusters analog inputs into classes without prior knowledge of the entire data set or of the number of clusters present in the data. The classification of an input takes place in a two-stage process; a simple competitive stage and a euclidean metric comparison stage. The AFLC algorithm and its operating characteristics are described. The algorithm is compared to an adaptive Bayesian classifier for some real data.<>
一种用于任意数据模式控制和聚类的自适应模糊系统
描述了一种模块化、无监督的神经网络结构。它可以用于数据聚类和分类。自适应模糊前导聚类(AFLC)体系结构是一种稳定、高效的在线学习的神经-模糊混合系统。该系统由一个模糊k-均值学习规则嵌入到一个类似于自适应共振理论(ART-1)网络的控制结构中。AFLC自适应地将模拟输入集群到类中,而不需要事先了解整个数据集或数据中存在的集群数量。输入的分类分两个阶段进行;一个简单的竞争阶段和一个欧几里得度量比较阶段。介绍了AFLC算法及其工作特性。对一些实际数据与自适应贝叶斯分类器进行了比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信