Generalised species of rigid resource terms

Takeshi Tsukada, Kazuyuki Asada, C. Ong
{"title":"Generalised species of rigid resource terms","authors":"Takeshi Tsukada, Kazuyuki Asada, C. Ong","doi":"10.1109/LICS.2017.8005093","DOIUrl":null,"url":null,"abstract":"This paper introduces a variant of the resource calculus, the rigid resource calculus, in which a permutation of elements in a bag is distinct from but isomorphic to the original bag. It is designed so that the Taylor expansion within it coincides with the interpretation by generalised species of Fiore et al., which generalises both Joyal's combinatorial species and Girard's normal functors, and which can be seen as a proof-relevant extension of the relational model. As an application, we prove the commutation between computing Böhm trees and (standard) Taylor expansions for a particular nondeterministic calculus.","PeriodicalId":313950,"journal":{"name":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"17 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2017.8005093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

This paper introduces a variant of the resource calculus, the rigid resource calculus, in which a permutation of elements in a bag is distinct from but isomorphic to the original bag. It is designed so that the Taylor expansion within it coincides with the interpretation by generalised species of Fiore et al., which generalises both Joyal's combinatorial species and Girard's normal functors, and which can be seen as a proof-relevant extension of the relational model. As an application, we prove the commutation between computing Böhm trees and (standard) Taylor expansions for a particular nondeterministic calculus.
刚性资源项的广义种
本文介绍了资源演算的一种变体——刚性资源演算,在刚性资源演算中,袋子中元素的排列不同于原袋子,但与原袋子同构。它的设计使其内部的泰勒展开式与Fiore等人的广义种解释相一致,后者推广了Joyal的组合种和Girard的正规函子,并且可以被视为关系模型的证明相关扩展。作为一个应用,我们证明了计算Böhm树和(标准)泰勒展开式之间的交换,用于特定的不确定性微积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信