Numeral recognition using curvelet transform

Farhad Mohamad Kazemi, J. Izadian, Reihaneh Moravejian, E. Kazemi
{"title":"Numeral recognition using curvelet transform","authors":"Farhad Mohamad Kazemi, J. Izadian, Reihaneh Moravejian, E. Kazemi","doi":"10.1109/AICCSA.2008.4493593","DOIUrl":null,"url":null,"abstract":"This paper proposes the performance of two new algorithms for digit recognition. These recognition systems are based on extracted features on the performance of image's curvelet transform & achieving standard deviation and entropy of curvelet coefficients matrix in different scales & various angels. In addition, the proposed recognition systems are obtained by using different scales information as feature vector. So, we could clarify the most important scales in aspect of having useful information .Finally by employing the Knn classifier we classify them into predefined classes. The classifier was trained and test with handwritten numeral database, MNIST The results of this test shows, that our correct recognition rate in \"curvelet transform+ standard deviation\" algorithm is 93% and in \"curvelet transform+ entropy\" algorithm is 82%.","PeriodicalId":234556,"journal":{"name":"2008 IEEE/ACS International Conference on Computer Systems and Applications","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE/ACS International Conference on Computer Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICCSA.2008.4493593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper proposes the performance of two new algorithms for digit recognition. These recognition systems are based on extracted features on the performance of image's curvelet transform & achieving standard deviation and entropy of curvelet coefficients matrix in different scales & various angels. In addition, the proposed recognition systems are obtained by using different scales information as feature vector. So, we could clarify the most important scales in aspect of having useful information .Finally by employing the Knn classifier we classify them into predefined classes. The classifier was trained and test with handwritten numeral database, MNIST The results of this test shows, that our correct recognition rate in "curvelet transform+ standard deviation" algorithm is 93% and in "curvelet transform+ entropy" algorithm is 82%.
利用曲波变换进行数字识别
本文提出了两种新的数字识别算法的性能。这些识别系统是基于提取的特征对图像曲线变换的性能,实现曲线系数矩阵在不同尺度和不同角度下的标准差和熵。此外,利用不同尺度的信息作为特征向量,得到了所提出的识别系统。因此,我们可以在具有有用信息方面澄清最重要的尺度。最后通过使用Knn分类器将它们分类为预定义的类。用手写数字数据库MNIST对分类器进行了训练和测试。测试结果表明,“曲线变换+标准差”算法的识别率为93%,“曲线变换+熵”算法的识别率为82%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信