A Neural Network For Detecting Fractals In Spatial Patterns

Bernd Freisleben, J. Greve, J. Lober
{"title":"A Neural Network For Detecting Fractals In Spatial Patterns","authors":"Bernd Freisleben, J. Greve, J. Lober","doi":"10.1109/NNAT.1993.586053","DOIUrl":null,"url":null,"abstract":"In this paper, a neural network approach for classifying given spatial patterns into fractals or non-fractals as presented. The proposed network is a hierarchically organized, multi-layer feedforward architecture which exploits the structural properties of artificially generated fractals. The backpropagation algorithm is employed for training the network. The network is implemented in parallel on a multi-transputer system. It is able to classify all non-noisy test patterns correctly; fractal patterns where 1/ f and random noise are added take longer for the network to converge, but up to a certain signal-to-noise ratio they are also classified correctly.","PeriodicalId":164805,"journal":{"name":"Workshop on Neural Network Applications and Tools","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Neural Network Applications and Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNAT.1993.586053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a neural network approach for classifying given spatial patterns into fractals or non-fractals as presented. The proposed network is a hierarchically organized, multi-layer feedforward architecture which exploits the structural properties of artificially generated fractals. The backpropagation algorithm is employed for training the network. The network is implemented in parallel on a multi-transputer system. It is able to classify all non-noisy test patterns correctly; fractal patterns where 1/ f and random noise are added take longer for the network to converge, but up to a certain signal-to-noise ratio they are also classified correctly.
空间模式中分形检测的神经网络
本文提出了一种基于神经网络的空间图形分形与非分形的分类方法。所提出的网络是一个分层组织的多层前馈体系结构,利用人工生成分形的结构特性。采用反向传播算法对网络进行训练。该网络是在多机系统上并行实现的。它能够正确地对所有非噪声测试模式进行分类;加入1/ f和随机噪声的分形模式需要较长的网络收敛时间,但在一定的信噪比下,它们也能正确分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信