A modified parallel approach to Single Source Shortest Path Problem for massively dense graphs using CUDA

Sumit Kumar, A. Misra, R. S. Tomar
{"title":"A modified parallel approach to Single Source Shortest Path Problem for massively dense graphs using CUDA","authors":"Sumit Kumar, A. Misra, R. S. Tomar","doi":"10.1109/ICCCT.2011.6075214","DOIUrl":null,"url":null,"abstract":"Today's Graphics Processing Units (GPUs) possess enormous computation power with highly parallel and multithreaded architecture, and the most attractive feature being their low costs. NVIDIA's CUDA provides an interface to the developers to use the GPUs for General Purpose Parallel Computing. In this paper, we present a modified algorithm of Single Source Shortest Path Problem on GPU using CUDA. First, we modify the standard BELLMAN-FORD algorithm to remove its drawbacks and make it suitable for parallel implementation, and then implement it using CUDA. For dense graphs, our Algorithm gains a speedup of 10×–12× over the previously proposed parallel algorithm. Our Algorithm also accept graphs with negative weighted edges and can detect any reachable Negative Weighted Cycle, which widens its scope to accept generalized problems.","PeriodicalId":285986,"journal":{"name":"2011 2nd International Conference on Computer and Communication Technology (ICCCT-2011)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 2nd International Conference on Computer and Communication Technology (ICCCT-2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCT.2011.6075214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Today's Graphics Processing Units (GPUs) possess enormous computation power with highly parallel and multithreaded architecture, and the most attractive feature being their low costs. NVIDIA's CUDA provides an interface to the developers to use the GPUs for General Purpose Parallel Computing. In this paper, we present a modified algorithm of Single Source Shortest Path Problem on GPU using CUDA. First, we modify the standard BELLMAN-FORD algorithm to remove its drawbacks and make it suitable for parallel implementation, and then implement it using CUDA. For dense graphs, our Algorithm gains a speedup of 10×–12× over the previously proposed parallel algorithm. Our Algorithm also accept graphs with negative weighted edges and can detect any reachable Negative Weighted Cycle, which widens its scope to accept generalized problems.
基于CUDA的大规模密集图单源最短路径问题的改进并行方法
当今的图形处理单元(gpu)具有高度并行和多线程架构的巨大计算能力,其最吸引人的特点是其低成本。NVIDIA的CUDA为开发人员提供了一个使用gpu进行通用并行计算的接口。本文提出了一种基于CUDA的GPU上单源最短路径问题的改进算法。首先,我们对标准BELLMAN-FORD算法进行了改进,消除了其缺点,使其适合并行实现,然后使用CUDA实现。对于密集图,我们的算法比之前提出的并行算法获得10×-12×的加速。该算法还可以接受具有负加权边的图,并且可以检测到任何可达的负加权环,从而扩大了其接受广义问题的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信