Solution of Eectromagnetic Scattering from PEC Targets Using SPACA-MLFACA-CBFM Algorithm

Xinlei Chen, Ziang Shen, Zhuo Li, C. Gu
{"title":"Solution of Eectromagnetic Scattering from PEC Targets Using SPACA-MLFACA-CBFM Algorithm","authors":"Xinlei Chen, Ziang Shen, Zhuo Li, C. Gu","doi":"10.1109/COMPEM.2018.8496728","DOIUrl":null,"url":null,"abstract":"This paper proposes an efficient hybrid sparfied adaptive cross approximation-multilevel fast adaptive cross approximation-characteristic basis function method (SPACA-MLFACA-CBFM) method for solving electrically large PEC targets. In this method, the CBFM is used to reduce the number of unknowns. The SPACA-MLFACA is employed to compress the reduced submatrices associated with the far-blocks pairs. Numerical results show that the new method can save much memory than the conventional MLFACA-CBFM.","PeriodicalId":221352,"journal":{"name":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPEM.2018.8496728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an efficient hybrid sparfied adaptive cross approximation-multilevel fast adaptive cross approximation-characteristic basis function method (SPACA-MLFACA-CBFM) method for solving electrically large PEC targets. In this method, the CBFM is used to reduce the number of unknowns. The SPACA-MLFACA is employed to compress the reduced submatrices associated with the far-blocks pairs. Numerical results show that the new method can save much memory than the conventional MLFACA-CBFM.
利用SPACA-MLFACA-CBFM算法求解PEC目标电磁散射
本文提出了一种求解电性大PEC目标的高效混合稀疏自适应交叉逼近-多级快速自适应交叉逼近-特征基函数法(SPACA-MLFACA-CBFM)方法。在该方法中,使用CBFM来减少未知数的数量。采用SPACA-MLFACA对与远块对相关的约简子矩阵进行压缩。数值结果表明,该方法比传统的MLFACA-CBFM方法节省了大量的内存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信