Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD

Y. Sekimoto, Y. Sekimoto, Y. Sekimoto, P. Ade, A. Adler, E. Allys, E. Allys, K. Arnold, D. Auguste, J. Aumont, R. Aurlien, J. Austermann, C. Baccigalupi, A. Banday, R. Banerji, R. B. Barreiro, S. Basak, J. Beall, D. Beck, S. Beckman, J. Bermejo, P. Bernardis, M. Bersanelli, J. Bonis, J. Borrill, J. Borrill, F. Boulanger, F. Boulanger, S. Bounissou, M. Brilenkov, Michael D Brown, M. Bucher, E. Calabrese, P. Campeti, A. Carones, F. Casas, A. Challinor, V. Chan, K. Cheung, Y. Chinone, J. Cliche, L. Colombo, F. Columbro, J. Cubas, A. Cukierman, A. Cukierman, D. Curtis, G. D’Alessandro, N. Dachlythra, M. Petris, C. Dickinson, P. Diego-Palazuelos, M. Dobbs, T. Dotani, L. Duband, S. Duff, J. Duval, K. Ebisawa, T. Elleflot, H. Eriksen, J. Errard, T. Essinger-Hileman, F. Finelli, R. Flauger, C. Franceschet, U. Fuskeland, M. Galloway, K. Ganga, Jiangsong Gao, R. Génova-Santos, M. Gerbino, M. Gervasi, Tommaso Ghigna, Tommaso Ghigna, E. Gjerløw, M. Gradziel, J. Grain, F. Grupp, A. Gruppuso, J. Gudmundsson, T. Haan, N
{"title":"Concept design of low frequency telescope for CMB B-mode polarization satellite LiteBIRD","authors":"Y. Sekimoto, Y. Sekimoto, Y. Sekimoto, P. Ade, A. Adler, E. Allys, E. Allys, K. Arnold, D. Auguste, J. Aumont, R. Aurlien, J. Austermann, C. Baccigalupi, A. Banday, R. Banerji, R. B. Barreiro, S. Basak, J. Beall, D. Beck, S. Beckman, J. Bermejo, P. Bernardis, M. Bersanelli, J. Bonis, J. Borrill, J. Borrill, F. Boulanger, F. Boulanger, S. Bounissou, M. Brilenkov, Michael D Brown, M. Bucher, E. Calabrese, P. Campeti, A. Carones, F. Casas, A. Challinor, V. Chan, K. Cheung, Y. Chinone, J. Cliche, L. Colombo, F. Columbro, J. Cubas, A. Cukierman, A. Cukierman, D. Curtis, G. D’Alessandro, N. Dachlythra, M. Petris, C. Dickinson, P. Diego-Palazuelos, M. Dobbs, T. Dotani, L. Duband, S. Duff, J. Duval, K. Ebisawa, T. Elleflot, H. Eriksen, J. Errard, T. Essinger-Hileman, F. Finelli, R. Flauger, C. Franceschet, U. Fuskeland, M. Galloway, K. Ganga, Jiangsong Gao, R. Génova-Santos, M. Gerbino, M. Gervasi, Tommaso Ghigna, Tommaso Ghigna, E. Gjerløw, M. Gradziel, J. Grain, F. Grupp, A. Gruppuso, J. Gudmundsson, T. Haan, N","doi":"10.1117/12.2561841","DOIUrl":null,"url":null,"abstract":"LiteBIRD has been selected as JAXA’s strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of -56 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34–161 GHz), one of LiteBIRD’s onboard telescopes. It has a wide field-of-view (18° x 9°) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90◦ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented.","PeriodicalId":393026,"journal":{"name":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2561841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

LiteBIRD has been selected as JAXA’s strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of -56 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34–161 GHz), one of LiteBIRD’s onboard telescopes. It has a wide field-of-view (18° x 9°) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90◦ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented.
微波背景b模偏振卫星LiteBIRD低频望远镜概念设计
LiteBIRD被日本宇宙航空研究开发机构(JAXA)选为2020年代的战略大型任务,以大角度尺度观测整个天空的宇宙微波背景(CMB) b模式偏振。LiteBIRD面临的挑战是毫米波偏振测量的宽视场(FoV)和宽带能力,这些都来自于系统需求。杂散光的可能路径随着视场的扩大而增加,远旁瓣知识达到-56 dB是一项具有挑战性的光学要求。LiteBIRD机载望远镜之一的低频望远镜(LFT: 34-161 GHz)选择了十字形dragone配置。它具有宽视场(18°x 9°),孔径直径为400毫米,对应于100 GHz左右的角分辨率约为30角分。焦比f/3.0和交叉角的光轴90◦是经过广泛的研究杂散光选择。主反光镜和副反光镜具有矩形的锯齿形状,以减少镜子边缘的衍射图案。反射器和结构由铝制成,按比例从温暖下降到5 K的工作温度。开发了LFT的1/4比例模型,以验证宽视场设计并演示减少的远旁瓣。偏振调制单元(PMU)由半波片(HWP)实现,置于该系统的入口光阑前。一个带有大约1000个AlMn TES探测器和频率复用SQUID放大器的大型焦平面被冷却到100 mK。透镜和弯曲天线具有宽带能力。提出了LFT的性能规格和提出的验证计划大纲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信