{"title":"Accounting for inherent circuit resilience and process variations in analyzing gate oxide reliability","authors":"Jian-wei Fang, S. Sapatnekar","doi":"10.1109/ASPDAC.2011.5722275","DOIUrl":null,"url":null,"abstract":"Gate oxide breakdown is a major cause of reliability failures in future nanometer-scale CMOS designs. This paper develops an analysis technique that can predict the probability of a functional failure in a large digital circuit due to this phenomenon. Novel features of the method include its ability to account for the inherent resilience in a circuit to a breakdown event, while simultaneously considering the impact of process variations. Based on standard process variation models, at a specified time instant, this procedure determines the circuit failure probability as a lognormal distribution. Experimental results demonstrate this approach is accurate compared with Monte Carlo simulation, and gives 4.7–5.9× better lifetime prediction over existing methods that are based on pessimistic area-scaling models.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2011.5722275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Gate oxide breakdown is a major cause of reliability failures in future nanometer-scale CMOS designs. This paper develops an analysis technique that can predict the probability of a functional failure in a large digital circuit due to this phenomenon. Novel features of the method include its ability to account for the inherent resilience in a circuit to a breakdown event, while simultaneously considering the impact of process variations. Based on standard process variation models, at a specified time instant, this procedure determines the circuit failure probability as a lognormal distribution. Experimental results demonstrate this approach is accurate compared with Monte Carlo simulation, and gives 4.7–5.9× better lifetime prediction over existing methods that are based on pessimistic area-scaling models.