Lattice QCD$_2$ effective action with Bogoliubov transformations

S. Caracciolo, M. Pastore
{"title":"Lattice QCD$_2$ effective action with Bogoliubov transformations","authors":"S. Caracciolo, M. Pastore","doi":"10.22323/1.336.0056","DOIUrl":null,"url":null,"abstract":"In the Wilson's lattice formulation of QCD, a fermionic Fock space of states can be explicitly built at each time slice using canonical creation and annihilation operators. The partition function $Z$ is then represented as the trace of the transfer matrix, and its usual functional representation as a path integral of $\\exp(- S)$ can be recovered in a standard way. However, applying a Bogoliubov transformation on the canonical operators before passing to the functional formalism, we can isolate a vacuum contribution in the resulting action which depends only on the parameters of the transformation and fixes them via a variational principle. Then, inserting in the trace defining $Z$ an operator projecting on the mesons subspace at each time slice and making the physical assumption that the true partition function is well approximate by the projected one, we can also write an effective quadratic action for mesons. We tested the method in the renowned 't Hooft model, namely QCD in two spacetime dimensions for large number of colours, in Coulomb gauge.","PeriodicalId":441384,"journal":{"name":"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.336.0056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the Wilson's lattice formulation of QCD, a fermionic Fock space of states can be explicitly built at each time slice using canonical creation and annihilation operators. The partition function $Z$ is then represented as the trace of the transfer matrix, and its usual functional representation as a path integral of $\exp(- S)$ can be recovered in a standard way. However, applying a Bogoliubov transformation on the canonical operators before passing to the functional formalism, we can isolate a vacuum contribution in the resulting action which depends only on the parameters of the transformation and fixes them via a variational principle. Then, inserting in the trace defining $Z$ an operator projecting on the mesons subspace at each time slice and making the physical assumption that the true partition function is well approximate by the projected one, we can also write an effective quadratic action for mesons. We tested the method in the renowned 't Hooft model, namely QCD in two spacetime dimensions for large number of colours, in Coulomb gauge.
格QCD$_2$与Bogoliubov变换的有效作用
在QCD的Wilson晶格公式中,可以使用正则生成和湮灭算子在每个时间片上显式地构建费米子Fock状态空间。然后将配分函数$Z$表示为传递矩阵的轨迹,其通常的函数表示为$\exp(- S)$的路径积分,可以用标准的方式恢复。然而,在传递到泛函形式之前,在规范算子上应用Bogoliubov变换,我们可以在只依赖于变换参数的结果作用中分离出真空贡献,并通过变分原理固定它们。然后,在定义$Z$的轨迹中插入一个在每个时间片上投影到介子子空间上的算子,并假设投影的配分函数很好地近似于真配分函数,我们也可以写出有效的介子二次作用。我们在著名的't Hooft模型中测试了该方法,即在库仑规范下的两个时空维度的大量颜色的QCD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信