fabsam @ AMI: A Convolutional Neural Network Approach (short paper)

Samuel Fabrizi
{"title":"fabsam @ AMI: A Convolutional Neural Network Approach (short paper)","authors":"Samuel Fabrizi","doi":"10.4000/BOOKS.AACCADEMIA.6782","DOIUrl":null,"url":null,"abstract":"The presence of misogynistic contents is one of the most crucial problems of social networks. In this paper we present our system for misogyny identification on Twitter. Our approach is based on a convolutional neural network that exploits pretrained word embeddings. We also experimented a comparison among different architectures to understand the effectiveness of our method. The paper also described our submissions to both subtasks A and B to Automatic Misogyny Identification competition at Evalita 2020.","PeriodicalId":184564,"journal":{"name":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EVALITA Evaluation of NLP and Speech Tools for Italian - December 17th, 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/BOOKS.AACCADEMIA.6782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The presence of misogynistic contents is one of the most crucial problems of social networks. In this paper we present our system for misogyny identification on Twitter. Our approach is based on a convolutional neural network that exploits pretrained word embeddings. We also experimented a comparison among different architectures to understand the effectiveness of our method. The paper also described our submissions to both subtasks A and B to Automatic Misogyny Identification competition at Evalita 2020.
fabsam @ AMI:卷积神经网络方法(短文)
厌恶女性内容的存在是社交网络最关键的问题之一。在本文中,我们介绍了我们在Twitter上识别厌女症的系统。我们的方法是基于卷积神经网络,利用预训练词嵌入。我们还在不同的体系结构之间进行了实验比较,以了解我们的方法的有效性。本文还描述了我们在Evalita 2020自动厌女症识别比赛中提交的子任务A和B。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信