Detecting the functional similarities between tools using a hierarchical representation of outcomes

J. Sinapov, A. Stoytchev
{"title":"Detecting the functional similarities between tools using a hierarchical representation of outcomes","authors":"J. Sinapov, A. Stoytchev","doi":"10.1109/DEVLRN.2008.4640811","DOIUrl":null,"url":null,"abstract":"The ability to reason about multiple tools and their functional similarities is a prerequisite for intelligent tool use. This paper presents a model which allows a robot to detect the similarity between tools based on the environmental outcomes observed with each tool. To do this, the robot incrementally learns an adaptive hierarchical representation (i.e., a taxonomy) for the types of environmental changes that it can induce and detect with each tool. Using the learned taxonomies, the robot can infer the similarity between different tools based on the types of outcomes they produce. The results show that the robot is able to learn accurate outcome models for six different tools. In addition, the robot was able to detect the similarity between tools using the learned outcome models.","PeriodicalId":366099,"journal":{"name":"2008 7th IEEE International Conference on Development and Learning","volume":"257 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"78","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 7th IEEE International Conference on Development and Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEVLRN.2008.4640811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 78

Abstract

The ability to reason about multiple tools and their functional similarities is a prerequisite for intelligent tool use. This paper presents a model which allows a robot to detect the similarity between tools based on the environmental outcomes observed with each tool. To do this, the robot incrementally learns an adaptive hierarchical representation (i.e., a taxonomy) for the types of environmental changes that it can induce and detect with each tool. Using the learned taxonomies, the robot can infer the similarity between different tools based on the types of outcomes they produce. The results show that the robot is able to learn accurate outcome models for six different tools. In addition, the robot was able to detect the similarity between tools using the learned outcome models.
使用结果的分层表示来检测工具之间的功能相似性
对多种工具及其功能相似性进行推理的能力是智能工具使用的先决条件。本文提出了一个模型,该模型允许机器人根据每个工具观察到的环境结果来检测工具之间的相似性。为了做到这一点,机器人逐渐学习一种自适应的层次表示(即分类),用于它可以诱导和检测每个工具的环境变化类型。使用学习到的分类,机器人可以根据不同工具产生的结果类型推断出它们之间的相似性。结果表明,该机器人能够学习六种不同工具的准确结果模型。此外,机器人能够使用学习结果模型检测工具之间的相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信