Thayse Nery, R. Sadler, Maria Solis-Aulestia, B. White, M. Polyakov, M. Chalak
{"title":"Comparing supervised algorithms in Land Use and Land Cover classification of a Landsat time-series","authors":"Thayse Nery, R. Sadler, Maria Solis-Aulestia, B. White, M. Polyakov, M. Chalak","doi":"10.1109/IGARSS.2016.7730346","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms (MLAs) are often applied to identify Land Use and Land Cover (LULC) changes, but typically to only a limited set of imagery. This leaves the consistency of MLAs performance through time poorly understood. The research objective was therefore to compare the performance of six MLAs across a time-series of Landsat imagery (1979, 1992, 2003, 2014), all processed in the same manner. Here Support Vector Machines (SVM), K-Nearest Neighbours (KNN), Random Forests (RF), Learning Vector Quantization (LVQ), Recursive Partitioning, Regression Trees (RPART) and Stochastic Gradient Boosting (GBM) were evaluated. The results demonstrated that SVM achieved higher overall accuracies and kappa coefficients, and a slightly improved fit at individual class level, than the second best classifier RF. Both classifiers clearly outperformed the other algorithms. These results suggest that SVMs (or RFs) should be prioritised when classifying time-series imagery for LULC change detection.","PeriodicalId":179622,"journal":{"name":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2016.7730346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
Machine learning algorithms (MLAs) are often applied to identify Land Use and Land Cover (LULC) changes, but typically to only a limited set of imagery. This leaves the consistency of MLAs performance through time poorly understood. The research objective was therefore to compare the performance of six MLAs across a time-series of Landsat imagery (1979, 1992, 2003, 2014), all processed in the same manner. Here Support Vector Machines (SVM), K-Nearest Neighbours (KNN), Random Forests (RF), Learning Vector Quantization (LVQ), Recursive Partitioning, Regression Trees (RPART) and Stochastic Gradient Boosting (GBM) were evaluated. The results demonstrated that SVM achieved higher overall accuracies and kappa coefficients, and a slightly improved fit at individual class level, than the second best classifier RF. Both classifiers clearly outperformed the other algorithms. These results suggest that SVMs (or RFs) should be prioritised when classifying time-series imagery for LULC change detection.