Comparing supervised algorithms in Land Use and Land Cover classification of a Landsat time-series

Thayse Nery, R. Sadler, Maria Solis-Aulestia, B. White, M. Polyakov, M. Chalak
{"title":"Comparing supervised algorithms in Land Use and Land Cover classification of a Landsat time-series","authors":"Thayse Nery, R. Sadler, Maria Solis-Aulestia, B. White, M. Polyakov, M. Chalak","doi":"10.1109/IGARSS.2016.7730346","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms (MLAs) are often applied to identify Land Use and Land Cover (LULC) changes, but typically to only a limited set of imagery. This leaves the consistency of MLAs performance through time poorly understood. The research objective was therefore to compare the performance of six MLAs across a time-series of Landsat imagery (1979, 1992, 2003, 2014), all processed in the same manner. Here Support Vector Machines (SVM), K-Nearest Neighbours (KNN), Random Forests (RF), Learning Vector Quantization (LVQ), Recursive Partitioning, Regression Trees (RPART) and Stochastic Gradient Boosting (GBM) were evaluated. The results demonstrated that SVM achieved higher overall accuracies and kappa coefficients, and a slightly improved fit at individual class level, than the second best classifier RF. Both classifiers clearly outperformed the other algorithms. These results suggest that SVMs (or RFs) should be prioritised when classifying time-series imagery for LULC change detection.","PeriodicalId":179622,"journal":{"name":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2016.7730346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Machine learning algorithms (MLAs) are often applied to identify Land Use and Land Cover (LULC) changes, but typically to only a limited set of imagery. This leaves the consistency of MLAs performance through time poorly understood. The research objective was therefore to compare the performance of six MLAs across a time-series of Landsat imagery (1979, 1992, 2003, 2014), all processed in the same manner. Here Support Vector Machines (SVM), K-Nearest Neighbours (KNN), Random Forests (RF), Learning Vector Quantization (LVQ), Recursive Partitioning, Regression Trees (RPART) and Stochastic Gradient Boosting (GBM) were evaluated. The results demonstrated that SVM achieved higher overall accuracies and kappa coefficients, and a slightly improved fit at individual class level, than the second best classifier RF. Both classifiers clearly outperformed the other algorithms. These results suggest that SVMs (or RFs) should be prioritised when classifying time-series imagery for LULC change detection.
比较Landsat时间序列土地利用和土地覆盖分类中的监督算法
机器学习算法(mla)经常被用于识别土地利用和土地覆盖(LULC)的变化,但通常只有一组有限的图像。这使得人们很难理解mla性能随时间的一致性。因此,研究目的是比较六个mla在陆地卫星图像时间序列(1979,1992,2003,2014)中的性能,所有这些图像都以相同的方式处理。本文对支持向量机(SVM)、k近邻(KNN)、随机森林(RF)、学习向量量化(LVQ)、递归分区、回归树(RPART)和随机梯度增强(GBM)进行了评价。结果表明,与第二好的分类器RF相比,SVM获得了更高的总体精度和kappa系数,并且在单个类水平上略有改善。两种分类器都明显优于其他算法。这些结果表明,在对时间序列图像进行LULC变化检测时,应优先考虑svm(或rf)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信