Analysis of image sequences to determine rotational and translational parameters

G. Tseng, A. Sood
{"title":"Analysis of image sequences to determine rotational and translational parameters","authors":"G. Tseng, A. Sood","doi":"10.1109/ISIC.1988.65426","DOIUrl":null,"url":null,"abstract":"An approach for analyzing image sequences for motion parameter estimation is presented. A sequence of an arbitrary number of image frames is utilized to determine rotational and translational parameters. A dynamic scene model is developed in which image sequences are processed as a temporally correlated complex. The object motion is represented as a discrete-time time-varying system. The measurement consists of a sequence of image coordinates of three or more feature points in each frame. Using this model, measurement of the position of the object in a set of consecutive frames permits the estimation of motion as a function of time. An iterative parameter estimation technique is used to minimize the projection error. The technique is based on results from optimal control theory. Motion parameters are estimated from the sequences of image correspondences by modeling the motion dynamics using motion transformation and viewing projection. This methodology is suitable for processing a long sequence in situations where a high rate of imagery is available. Results are presented for general rigid-body motion in the context of synthesized images and real robot images.<<ETX>>","PeriodicalId":155616,"journal":{"name":"Proceedings IEEE International Symposium on Intelligent Control 1988","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Symposium on Intelligent Control 1988","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1988.65426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An approach for analyzing image sequences for motion parameter estimation is presented. A sequence of an arbitrary number of image frames is utilized to determine rotational and translational parameters. A dynamic scene model is developed in which image sequences are processed as a temporally correlated complex. The object motion is represented as a discrete-time time-varying system. The measurement consists of a sequence of image coordinates of three or more feature points in each frame. Using this model, measurement of the position of the object in a set of consecutive frames permits the estimation of motion as a function of time. An iterative parameter estimation technique is used to minimize the projection error. The technique is based on results from optimal control theory. Motion parameters are estimated from the sequences of image correspondences by modeling the motion dynamics using motion transformation and viewing projection. This methodology is suitable for processing a long sequence in situations where a high rate of imagery is available. Results are presented for general rigid-body motion in the context of synthesized images and real robot images.<>
分析图像序列,确定旋转和平移参数
提出了一种基于图像序列分析的运动参数估计方法。利用任意数目的图像帧的序列来确定旋转和平移参数。建立了一种动态场景模型,其中图像序列被处理为一个时间相关的复合体。将物体运动表示为离散时变系统。测量由每帧中三个或更多特征点的图像坐标序列组成。使用该模型,在一组连续帧中测量物体的位置,可以估计运动作为时间的函数。采用迭代参数估计技术使投影误差最小化。该技术是基于最优控制理论的结果。利用运动变换和视觉投影对运动动力学进行建模,从图像对应序列中估计运动参数。这种方法适用于在高图像率可用的情况下处理长序列。在合成图像和真实机器人图像的背景下,给出了一般刚体运动的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信