Geometric Hitting Set for Line-Constrained Disks and Related Problems

Gang Liu, Haitao Wang
{"title":"Geometric Hitting Set for Line-Constrained Disks and Related Problems","authors":"Gang Liu, Haitao Wang","doi":"10.48550/arXiv.2305.09045","DOIUrl":null,"url":null,"abstract":"Given a set $P$ of $n$ weighted points and a set $S$ of $m$ disks in the plane, the hitting set problem is to compute a subset $P'$ of points of $P$ such that each disk contains at least one point of $P'$ and the total weight of all points of $P'$ is minimized. The problem is known to be NP-hard. In this paper, we consider a line-constrained version of the problem in which all disks are centered on a line $\\ell$. We present an $O((m+n)\\log(m+n)+\\kappa \\log m)$ time algorithm for the problem, where $\\kappa$ is the number of pairs of disks that intersect. For the unit-disk case where all disks have the same radius, the running time can be reduced to $O((n + m)\\log(m + n))$. In addition, we solve the problem in $O((m + n)\\log(m + n))$ time in the $L_{\\infty}$ and $L_1$ metrics, in which a disk is a square and a diamond, respectively. Our techniques can also be used to solve other geometric hitting set problems. For example, given in the plane a set $P$ of $n$ weighted points and a set $S$ of $n$ half-planes, we solve in $O(n^4\\log n)$ time the problem of finding a minimum weight hitting set of $P$ for $S$. This improves the previous best algorithm of $O(n^6)$ time by nearly a quadratic factor.","PeriodicalId":380945,"journal":{"name":"Workshop on Algorithms and Data Structures","volume":"436 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Algorithms and Data Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.09045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a set $P$ of $n$ weighted points and a set $S$ of $m$ disks in the plane, the hitting set problem is to compute a subset $P'$ of points of $P$ such that each disk contains at least one point of $P'$ and the total weight of all points of $P'$ is minimized. The problem is known to be NP-hard. In this paper, we consider a line-constrained version of the problem in which all disks are centered on a line $\ell$. We present an $O((m+n)\log(m+n)+\kappa \log m)$ time algorithm for the problem, where $\kappa$ is the number of pairs of disks that intersect. For the unit-disk case where all disks have the same radius, the running time can be reduced to $O((n + m)\log(m + n))$. In addition, we solve the problem in $O((m + n)\log(m + n))$ time in the $L_{\infty}$ and $L_1$ metrics, in which a disk is a square and a diamond, respectively. Our techniques can also be used to solve other geometric hitting set problems. For example, given in the plane a set $P$ of $n$ weighted points and a set $S$ of $n$ half-planes, we solve in $O(n^4\log n)$ time the problem of finding a minimum weight hitting set of $P$ for $S$. This improves the previous best algorithm of $O(n^6)$ time by nearly a quadratic factor.
线约束圆盘的几何命中集及相关问题
给定平面上一个由$n$个加权点组成的集合$P$和一个由$m$个磁盘组成的集合$S$,命中集问题是计算一个由$P$个点组成的子集$P'$,使得每个磁盘至少包含一个$P'$点,并且所有$P'$点的总权重最小。这个问题被称为NP-hard。在本文中,我们考虑了问题的一个线约束版本,其中所有磁盘都集中在一条线上$\ell$。我们为这个问题提出了一个$O((m+n)\log(m+n)+\kappa \log m)$时间算法,其中$\kappa$是相交的磁盘对的数量。对于所有磁盘具有相同半径的单位磁盘情况,运行时间可以减少到$O((n + m)\log(m + n))$。此外,我们在$L_{\infty}$和$L_1$度量中在$O((m + n)\log(m + n))$时间内解决了这个问题,其中磁盘分别是正方形和菱形。我们的技术也可以用于解决其他几何命中集问题。例如,在平面上给定一个由$n$组成的加权点集$P$和由$n$组成的半平面集$S$,我们在$O(n^4\log n)$时间内解决了为$S$找到一个最小权重命中集$P$的问题。这将先前的最佳算法$O(n^6)$ time提高了近一个二次因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信