Predicting political mood tendencies based on Twitter data

Aldo Hernandez-Suarez, G. Sánchez-Pérez, V. Martínez-Hernández, H. Meana, K. Toscano-Medina, M. Nakano-Miyatake, Victor Sanchez
{"title":"Predicting political mood tendencies based on Twitter data","authors":"Aldo Hernandez-Suarez, G. Sánchez-Pérez, V. Martínez-Hernández, H. Meana, K. Toscano-Medina, M. Nakano-Miyatake, Victor Sanchez","doi":"10.1109/IWBF.2017.7935106","DOIUrl":null,"url":null,"abstract":"Online social media has changed the way of interacting among users, nowadays, is used as a tool for expressing polarized opinions related to a global or specific context. Valuable information can be gathered in real-time basis and can help to determine if such data has a social impact on users represented as comfort or discomfort on a political domain. Analyzing data related to political domains like government, elections, security & defense and health insurance are important for measuring social mood and predicting whether there is a positive or negative tendency on selected populations. This paper presents a mood analysis methodology on Twitter data to predict social sentiment on political events. The proposed methodology is done by gathering streams of Twitter's information, then converted into trained data for processing and classification such that we can statistically predict if there is a positive or negative tendency on political events.","PeriodicalId":111316,"journal":{"name":"2017 5th International Workshop on Biometrics and Forensics (IWBF)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Workshop on Biometrics and Forensics (IWBF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBF.2017.7935106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Online social media has changed the way of interacting among users, nowadays, is used as a tool for expressing polarized opinions related to a global or specific context. Valuable information can be gathered in real-time basis and can help to determine if such data has a social impact on users represented as comfort or discomfort on a political domain. Analyzing data related to political domains like government, elections, security & defense and health insurance are important for measuring social mood and predicting whether there is a positive or negative tendency on selected populations. This paper presents a mood analysis methodology on Twitter data to predict social sentiment on political events. The proposed methodology is done by gathering streams of Twitter's information, then converted into trained data for processing and classification such that we can statistically predict if there is a positive or negative tendency on political events.
根据Twitter数据预测政治情绪倾向
在线社交媒体改变了用户之间的互动方式,如今,它被用作表达与全球或特定背景相关的两极分化观点的工具。可以实时收集有价值的信息,并有助于确定这些数据是否对政治领域的用户产生社会影响。分析与政治领域相关的数据,如政府、选举、安全和国防以及医疗保险,对于衡量社会情绪和预测选定人群中是否存在积极或消极的趋势非常重要。本文提出了一种基于Twitter数据的情绪分析方法来预测政治事件的社会情绪。所提出的方法是通过收集Twitter的信息流,然后转换为经过训练的数据进行处理和分类,这样我们就可以在统计上预测政治事件是否有积极或消极的趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信