Diagnostically lossless compression of pipeline inspection data

W. Tham, Sandra I. Woolley, Sue Cribbs, Don Anderson
{"title":"Diagnostically lossless compression of pipeline inspection data","authors":"W. Tham, Sandra I. Woolley, Sue Cribbs, Don Anderson","doi":"10.1109/DCC.2002.1000016","DOIUrl":null,"url":null,"abstract":"Summary form only given. All pipelines are subject to corrosion and require inspection in accordance with regulatory requirements to ensure human safety. Intelligent pipeline inspection gauges (PIGs) have provided reliable online inspection of pipelines, supplying operators with detailed information about pipeline condition. We present a method for the diagnostically lossless compression of pipeline inspection data and discuss important pipeline features, e.g. welds, cracks and erosion objects. The dataset, transverse field inspection (TFI) data, is a new type of pipeline inspection data in contrast to the traditional magnetic flux leakage (MFL) inspection data. The nature of the data makes feature preservation essential. TFI pipeline features have been collected, classified and analysed and examples are shown. Feature detection is desirable in order to identify regions of diagnostic interest. Incorporation of region-of-interest (ROI) into the SPIHT encoding scheme enables the allocation of a greater proportion of the total allowance of bits to the regions of the image identified as diagnostically significant. Our quality assessment is based on the preservation of important defect parameters to ensure diagnostically lossless performance. We present results comparing performance between ROI SPIHT and non-ROI SPIHT.","PeriodicalId":420897,"journal":{"name":"Proceedings DCC 2002. Data Compression Conference","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC 2002. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2002.1000016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Summary form only given. All pipelines are subject to corrosion and require inspection in accordance with regulatory requirements to ensure human safety. Intelligent pipeline inspection gauges (PIGs) have provided reliable online inspection of pipelines, supplying operators with detailed information about pipeline condition. We present a method for the diagnostically lossless compression of pipeline inspection data and discuss important pipeline features, e.g. welds, cracks and erosion objects. The dataset, transverse field inspection (TFI) data, is a new type of pipeline inspection data in contrast to the traditional magnetic flux leakage (MFL) inspection data. The nature of the data makes feature preservation essential. TFI pipeline features have been collected, classified and analysed and examples are shown. Feature detection is desirable in order to identify regions of diagnostic interest. Incorporation of region-of-interest (ROI) into the SPIHT encoding scheme enables the allocation of a greater proportion of the total allowance of bits to the regions of the image identified as diagnostically significant. Our quality assessment is based on the preservation of important defect parameters to ensure diagnostically lossless performance. We present results comparing performance between ROI SPIHT and non-ROI SPIHT.
诊断无损压缩管道检测数据
只提供摘要形式。所有管道均存在腐蚀,需按法规要求进行检查,确保人身安全。智能管道检测仪表(pig)提供了可靠的管道在线检测,为操作人员提供了管道状况的详细信息。我们提出了一种诊断无损压缩管道检测数据的方法,并讨论了重要的管道特征,如焊缝,裂纹和侵蚀物体。该数据集为横向场检测(TFI)数据,是相对于传统漏磁检测(MFL)数据而言的一种新型管道检测数据。数据的性质决定了特征保存的必要性。对TFI管道特征进行了收集、分类和分析,并给出了实例。为了识别诊断感兴趣的区域,特征检测是可取的。将感兴趣区域(ROI)合并到SPIHT编码方案中,可以将更大比例的总允许位分配到被识别为诊断显著的图像区域。我们的质量评估是基于保存重要的缺陷参数,以确保诊断无损性能。我们提出了ROI SPIHT和非ROI SPIHT之间的性能比较结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信