Centralisers of Formal Maps

A. O’Farrell
{"title":"Centralisers of Formal Maps","authors":"A. O’Farrell","doi":"10.1353/mpr.2022.0005","DOIUrl":null,"url":null,"abstract":"We consider formal maps in any finite dimension $d$ with coefficients in an integral domain $K$ with identity. Those invertible under formal composition form a group $\\G$. We consider the centraliser $C_g$ of an element $g\\in\\G$ which is tangent to the identity of $\\G$. Elements of finite order always have a large centraliser. If $g$ has infinite order our main result is that $C_g$ is uncountable, and in fact contains an uncountable abelian subgroup. This holds regardless of the characteristic of $K$, but the proof is quite different in finite characteristic than in characteritic zero.","PeriodicalId":434988,"journal":{"name":"Mathematical Proceedings of the Royal Irish Academy","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Royal Irish Academy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/mpr.2022.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider formal maps in any finite dimension $d$ with coefficients in an integral domain $K$ with identity. Those invertible under formal composition form a group $\G$. We consider the centraliser $C_g$ of an element $g\in\G$ which is tangent to the identity of $\G$. Elements of finite order always have a large centraliser. If $g$ has infinite order our main result is that $C_g$ is uncountable, and in fact contains an uncountable abelian subgroup. This holds regardless of the characteristic of $K$, but the proof is quite different in finite characteristic than in characteritic zero.
正式地图的中心化器
我们考虑在任意有限维$d$上,在具有恒等的积分域$K$上具有系数的形式映射。在形式复合下可逆的组成一个群$\G$。我们考虑一个与恒等式相切的元素$g\在$g $中的集中器$C_g$。有限阶的元素总是有一个大的中心点。如果$g$具有无限阶,我们的主要结论是$C_g$是不可数的,并且实际上包含一个不可数的阿贝尔子群。不管K的特征是什么,这个证明都成立,但是在有限特征上的证明与在特征0上的证明是完全不同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信