Dynamic Gesture Design and Recognition for Human-Robot Collaboration With Convolutional Neural Networks

Haodong Chen, Wenjin Tao, M. Leu, Zhaozheng Yin
{"title":"Dynamic Gesture Design and Recognition for Human-Robot Collaboration With Convolutional Neural Networks","authors":"Haodong Chen, Wenjin Tao, M. Leu, Zhaozheng Yin","doi":"10.1115/isfa2020-9609","DOIUrl":null,"url":null,"abstract":"\n Human-robot collaboration (HRC) is a challenging task in modern industry and gesture communication in HRC has attracted much interest. This paper proposes and demonstrates a dynamic gesture recognition system based on Motion History Image (MHI) and Convolutional Neural Networks (CNN). Firstly, ten dynamic gestures are designed for a human worker to communicate with an industrial robot. Secondly, the MHI method is adopted to extract the gesture features from video clips and generate static images of dynamic gestures as inputs to CNN. Finally, a CNN model is constructed for gesture recognition. The experimental results show very promising classification accuracy using this method.","PeriodicalId":159740,"journal":{"name":"2020 International Symposium on Flexible Automation","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Symposium on Flexible Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/isfa2020-9609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Human-robot collaboration (HRC) is a challenging task in modern industry and gesture communication in HRC has attracted much interest. This paper proposes and demonstrates a dynamic gesture recognition system based on Motion History Image (MHI) and Convolutional Neural Networks (CNN). Firstly, ten dynamic gestures are designed for a human worker to communicate with an industrial robot. Secondly, the MHI method is adopted to extract the gesture features from video clips and generate static images of dynamic gestures as inputs to CNN. Finally, a CNN model is constructed for gesture recognition. The experimental results show very promising classification accuracy using this method.
基于卷积神经网络的人机协作动态手势设计与识别
人机协作(HRC)是现代工业中的一个具有挑战性的任务,手势通信在人机协作中引起了人们的广泛关注。本文提出并演示了一种基于运动历史图像(MHI)和卷积神经网络(CNN)的动态手势识别系统。首先,设计了人类工人与工业机器人交流的十种动态手势。其次,采用MHI方法从视频片段中提取手势特征,生成动态手势的静态图像作为CNN的输入。最后,构建了用于手势识别的CNN模型。实验结果表明,该方法具有很好的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信