Harris’ Hawks Optimization-Tuned Density-based Clustering

Muhammad Shoaib Omar, S. Waqas, K. Talpur, Sumra Khan, Shakeel Ahmad
{"title":"Harris’ Hawks Optimization-Tuned Density-based Clustering","authors":"Muhammad Shoaib Omar, S. Waqas, K. Talpur, Sumra Khan, Shakeel Ahmad","doi":"10.30537/sjet.v6i1.1305","DOIUrl":null,"url":null,"abstract":"Clustering is a machine learning technique that groups data samples based on similarity and identifies outliers with distinct features. Density-based clustering outperforms other methods because it can handle arbitrary shapes of clustering distributions. However, it has a limitation of requiring empirical values for the cluster center and the nominal distance between the cluster center and other data points. These values affect the accuracy and the number of clusters obtained by the algorithm. This paper proposes a solution to optimize these parameters using Harris’ hawks optimization (HHO), an efficient optimization technique that balances exploration and exploitation and avoids stagnation in later iterations. The proposed HHO-tuned density-based clustering achieves better performance as compared to other optimizers used in this work. This research also provides a reference for designing efficient clustering techniques for complex-shaped datasets.","PeriodicalId":369308,"journal":{"name":"Sukkur IBA Journal of Emerging Technologies","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sukkur IBA Journal of Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30537/sjet.v6i1.1305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clustering is a machine learning technique that groups data samples based on similarity and identifies outliers with distinct features. Density-based clustering outperforms other methods because it can handle arbitrary shapes of clustering distributions. However, it has a limitation of requiring empirical values for the cluster center and the nominal distance between the cluster center and other data points. These values affect the accuracy and the number of clusters obtained by the algorithm. This paper proposes a solution to optimize these parameters using Harris’ hawks optimization (HHO), an efficient optimization technique that balances exploration and exploitation and avoids stagnation in later iterations. The proposed HHO-tuned density-based clustering achieves better performance as compared to other optimizers used in this work. This research also provides a reference for designing efficient clustering techniques for complex-shaped datasets.
Harris ' s Hawks优化优化的基于密度的聚类
聚类是一种机器学习技术,它根据相似性对数据样本进行分组,并识别具有不同特征的异常值。基于密度的聚类优于其他方法,因为它可以处理任意形状的聚类分布。然而,它有一个局限性,即需要聚类中心的经验值以及聚类中心与其他数据点之间的标称距离。这些值会影响算法获得的聚类的准确性和数量。本文提出了一种利用Harris’s hawks optimization (HHO)优化这些参数的解决方案。Harris’s hawks optimization (HHO)是一种有效的优化技术,能够平衡勘探和开发,避免在后续迭代中出现停滞。与这项工作中使用的其他优化器相比,所提出的hho调优的基于密度的集群实现了更好的性能。该研究也为设计复杂形状数据集的高效聚类技术提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信