{"title":"DREAM-GAN: Advancing DREAMPlace towards Commercial-Quality using Generative Adversarial Learning","authors":"Yi-Chen Lu, Haoxing Ren, Hao-Hsiang Hsiao, S. Lim","doi":"10.1145/3569052.3572993","DOIUrl":null,"url":null,"abstract":"DREAMPlace is a renowned open-source placer that provides GPU-acceleratable infrastructure for placements of Very-Large-Scale-Integration (VLSI) circuits. However, due to its limited focus on wirelength and density, existing placement solutions of DREAMPlace are not applicable to industrial design flows. To improve DREAMPlace towards commercial-quality without knowing the black-boxed algorithms of the tools, in this paper, we present DREAM-GAN, a placement optimization framework that advances DREAMPlace using generative adversarial learning. At each placement iteration, aside from optimizing the wirelength and density objectives of the vanilla DREAMPlace, DREAM-GAN computes and optimizes a differentiable loss that denotes the similarity score between the underlying placement and the tool-generated placements in commercial databases. Experimental results on 5 commercial and OpenCore designs using an industrial design flow implemented by Synopsys ICC2 not only demonstrate that DREAM-GAN significantly improves the vanilla DREAMPlace at the placement stage across each benchmark, but also show that the improvements last firmly to the post-route stage, where we observe improvements by up to 8.3% in wirelength and 7.4% in total power.","PeriodicalId":169581,"journal":{"name":"Proceedings of the 2023 International Symposium on Physical Design","volume":"298 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 International Symposium on Physical Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3569052.3572993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
DREAMPlace is a renowned open-source placer that provides GPU-acceleratable infrastructure for placements of Very-Large-Scale-Integration (VLSI) circuits. However, due to its limited focus on wirelength and density, existing placement solutions of DREAMPlace are not applicable to industrial design flows. To improve DREAMPlace towards commercial-quality without knowing the black-boxed algorithms of the tools, in this paper, we present DREAM-GAN, a placement optimization framework that advances DREAMPlace using generative adversarial learning. At each placement iteration, aside from optimizing the wirelength and density objectives of the vanilla DREAMPlace, DREAM-GAN computes and optimizes a differentiable loss that denotes the similarity score between the underlying placement and the tool-generated placements in commercial databases. Experimental results on 5 commercial and OpenCore designs using an industrial design flow implemented by Synopsys ICC2 not only demonstrate that DREAM-GAN significantly improves the vanilla DREAMPlace at the placement stage across each benchmark, but also show that the improvements last firmly to the post-route stage, where we observe improvements by up to 8.3% in wirelength and 7.4% in total power.