Investigation the Possibility of Increasing the Accuracy of Predicting the Critical Frequency of the F2 Layer Using Artificial Neural Networks

K. A. Sidorenko, A. Vasenina
{"title":"Investigation the Possibility of Increasing the Accuracy of Predicting the Critical Frequency of the F2 Layer Using Artificial Neural Networks","authors":"K. A. Sidorenko, A. Vasenina","doi":"10.1109/SIBCON50419.2021.9438929","DOIUrl":null,"url":null,"abstract":"The article presents the results of evaluating the effectiveness of using artificial neural networks to predict the critical frequency of the ionosphere. When calculating the quantitative values of the errors, the vertical sounding database were used for 18 years from 2002 to 2019. Modeling of the critical frequency is based on the recommendations of the radio sector of the International Telecommunication Union (ITU-R). In order to predict the ionosphere in the ITU-R model, the more accurate index F10.7 was used instead of the Wolf number. The data obtained make it possible to determine the advantages of the method for correcting model calculations throughout the entire 11-year solar cycle.","PeriodicalId":150550,"journal":{"name":"2021 International Siberian Conference on Control and Communications (SIBCON)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Siberian Conference on Control and Communications (SIBCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBCON50419.2021.9438929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article presents the results of evaluating the effectiveness of using artificial neural networks to predict the critical frequency of the ionosphere. When calculating the quantitative values of the errors, the vertical sounding database were used for 18 years from 2002 to 2019. Modeling of the critical frequency is based on the recommendations of the radio sector of the International Telecommunication Union (ITU-R). In order to predict the ionosphere in the ITU-R model, the more accurate index F10.7 was used instead of the Wolf number. The data obtained make it possible to determine the advantages of the method for correcting model calculations throughout the entire 11-year solar cycle.
探讨了利用人工神经网络提高F2层临界频率预测精度的可能性
本文介绍了利用人工神经网络预测电离层临界频率的有效性评价结果。在计算误差定量值时,使用了2002 - 2019年18年的垂直测深数据库。关键频率的建模是基于国际电信联盟(ITU-R)无线电部门的建议。为了在ITU-R模型中预测电离层,使用了更精确的指数F10.7来代替Wolf数。所获得的数据使我们能够确定在整个11年太阳周期内修正模式计算的方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信