Automatic Face Detection and Recognition for Attendance Maintenance

Narayana Darapaneni, Aruna Kumari Evoori, Vijaya Babu Vemuri, Thangaselvi Arichandrapandian, G. Karthikeyan, A. Paduri, D. Babu, J. Madhavan
{"title":"Automatic Face Detection and Recognition for Attendance Maintenance","authors":"Narayana Darapaneni, Aruna Kumari Evoori, Vijaya Babu Vemuri, Thangaselvi Arichandrapandian, G. Karthikeyan, A. Paduri, D. Babu, J. Madhavan","doi":"10.1109/ICIIS51140.2020.9342670","DOIUrl":null,"url":null,"abstract":"This paper focuses on building a deep learning based efficient attendance capturing system. Contemporary world is heading towards AI where every second creates a new vision with an enormous change. In Artificial Intelligence (AI), face recognition is one of the fastest growing domains. Instead of using traditional methods for marking attendance, we propose to automate it by identifying human faces with their unique face features known as Face Recognition. Face detection is a prerequisite process for face recognition which aims to identify and locate all faces irrespective of their position, scale, orientation, lighting conditions, expression etc. We created a system architectural solution using YOLO, MTCNN, FaceNet embeddings by applying multiple augmentations, picture quality check and de-noise methods to get a better attendance system with less maintenance, low cost hardware (Google Colab - Free Version), better performance and accuracy.","PeriodicalId":352858,"journal":{"name":"2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 15th International Conference on Industrial and Information Systems (ICIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIS51140.2020.9342670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper focuses on building a deep learning based efficient attendance capturing system. Contemporary world is heading towards AI where every second creates a new vision with an enormous change. In Artificial Intelligence (AI), face recognition is one of the fastest growing domains. Instead of using traditional methods for marking attendance, we propose to automate it by identifying human faces with their unique face features known as Face Recognition. Face detection is a prerequisite process for face recognition which aims to identify and locate all faces irrespective of their position, scale, orientation, lighting conditions, expression etc. We created a system architectural solution using YOLO, MTCNN, FaceNet embeddings by applying multiple augmentations, picture quality check and de-noise methods to get a better attendance system with less maintenance, low cost hardware (Google Colab - Free Version), better performance and accuracy.
考勤维护中的自动人脸检测与识别
本文的重点是建立一个基于深度学习的高效考勤系统。当代世界正在走向人工智能,每一秒都在创造一个新的愿景,带来巨大的变化。在人工智能(AI)中,人脸识别是发展最快的领域之一。代替使用传统的考勤方法,我们建议通过识别具有独特面部特征的人脸来自动化考勤,即人脸识别。人脸检测是人脸识别的先决条件,其目的是识别和定位所有人脸,而不考虑其位置,规模,方向,光照条件,表情等。我们创建了一个系统架构解决方案,使用YOLO、MTCNN、FaceNet嵌入,通过应用多种增强、图像质量检查和去噪方法,以更少的维护、低成本的硬件(Google Colab - Free Version)、更好的性能和准确性来获得更好的考勤系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信