Facial Expression Transfer from Video Via Deep Learning

Xiaojun Zeng, S. Dwarakanath, Wuyue Lu, Masaki Nakada, Demetri Terzopoulos
{"title":"Facial Expression Transfer from Video Via Deep Learning","authors":"Xiaojun Zeng, S. Dwarakanath, Wuyue Lu, Masaki Nakada, Demetri Terzopoulos","doi":"10.1145/3475946.3480959","DOIUrl":null,"url":null,"abstract":"The transfer of facial expressions from people to 3D face models is a classic computer graphics problem. In this paper, we present a novel, learning-based approach to transferring facial expressions and head movements from images and videos to a biomechanical model of the face-head-neck musculoskeletal complex. Specifically, leveraging the Facial Action Coding System (FACS) as an intermediate representation of the expression space, we train a deep neural network to take in FACS Action Units (AUs) and output suitable facial muscle and jaw activations for the biomechanical model. Through biomechanical simulation, the activations deform the face, thereby transferring the expression to the model. The success of our approach is demonstrated through experiments involving the transfer of a range of expressive facial images and videos onto our biomechanical face-head-neck complex.","PeriodicalId":300353,"journal":{"name":"The ACM SIGGRAPH / Eurographics Symposium on Computer Animation","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ACM SIGGRAPH / Eurographics Symposium on Computer Animation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3475946.3480959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The transfer of facial expressions from people to 3D face models is a classic computer graphics problem. In this paper, we present a novel, learning-based approach to transferring facial expressions and head movements from images and videos to a biomechanical model of the face-head-neck musculoskeletal complex. Specifically, leveraging the Facial Action Coding System (FACS) as an intermediate representation of the expression space, we train a deep neural network to take in FACS Action Units (AUs) and output suitable facial muscle and jaw activations for the biomechanical model. Through biomechanical simulation, the activations deform the face, thereby transferring the expression to the model. The success of our approach is demonstrated through experiments involving the transfer of a range of expressive facial images and videos onto our biomechanical face-head-neck complex.
通过深度学习从视频中转移面部表情
从人的面部表情到三维面部模型的转换是一个经典的计算机图形学问题。在本文中,我们提出了一种新颖的、基于学习的方法,将面部表情和头部运动从图像和视频转移到脸-头颈肌肉骨骼复合体的生物力学模型中。具体来说,利用面部动作编码系统(FACS)作为表达空间的中间表示,我们训练了一个深度神经网络来接受FACS动作单元(au),并为生物力学模型输出合适的面部肌肉和下颌激活。通过生物力学模拟,激活使面部变形,从而将表情传递给模型。我们的方法的成功是通过实验来证明的,实验包括将一系列富有表现力的面部图像和视频转移到我们的生物力学面部-头颈复合体上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信