Weak signal detection in hyperspectral imagery using sparse matrix transform (smt) covariance estimation

G. Cao, C. Bouman, J. Theiler
{"title":"Weak signal detection in hyperspectral imagery using sparse matrix transform (smt) covariance estimation","authors":"G. Cao, C. Bouman, J. Theiler","doi":"10.1109/WHISPERS.2009.5289043","DOIUrl":null,"url":null,"abstract":"Many detection algorithms in hyperspectral image analysis, from well-characterized gaseous and solid targets to deliberately uncharacterized anomalies and anomalous changes, depend on accurately estimating the covariance matrix of the background. In practice, the background covariance is estimated from samples in the image, and imprecision in this estimate can lead to a loss of detection power. In this paper, we describe the sparse matrix transform (SMT) and investigate its utility for estimating the covariance matrix from a limited number of samples. The SMT is formed by a product of pairwise coordinate (Givens) rotations. Experiments on hyperspectral data show that the estimate accurately reproduces even small eigenvalues and eigenvectors. In particular, we find that using the SMT to estimate the covariance matrix used in the adaptive matched filter leads to consistently higher signal-to-clutter ratios.","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"82 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Many detection algorithms in hyperspectral image analysis, from well-characterized gaseous and solid targets to deliberately uncharacterized anomalies and anomalous changes, depend on accurately estimating the covariance matrix of the background. In practice, the background covariance is estimated from samples in the image, and imprecision in this estimate can lead to a loss of detection power. In this paper, we describe the sparse matrix transform (SMT) and investigate its utility for estimating the covariance matrix from a limited number of samples. The SMT is formed by a product of pairwise coordinate (Givens) rotations. Experiments on hyperspectral data show that the estimate accurately reproduces even small eigenvalues and eigenvectors. In particular, we find that using the SMT to estimate the covariance matrix used in the adaptive matched filter leads to consistently higher signal-to-clutter ratios.
基于稀疏矩阵变换协方差估计的高光谱图像弱信号检测
高光谱图像分析中的许多检测算法,从特征良好的气体和固体目标到故意不特征的异常和异常变化,都依赖于准确估计背景的协方差矩阵。在实际中,背景协方差是从图像中的样本中估计出来的,这种估计的不精确会导致检测能力的损失。在本文中,我们描述了稀疏矩阵变换(SMT),并研究了它在从有限数量的样本估计协方差矩阵的效用。SMT由成对坐标(给定)旋转的乘积构成。在高光谱数据上的实验表明,该估计可以准确地再现小的特征值和特征向量。特别是,我们发现使用SMT来估计自适应匹配滤波器中使用的协方差矩阵会导致始终较高的信杂比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信