Mapping Self-Organized Criticality onto Criticality

D. Sornette, A. Johansen, I. Dornic
{"title":"Mapping Self-Organized Criticality onto Criticality","authors":"D. Sornette, A. Johansen, I. Dornic","doi":"10.1051/jp1:1995129","DOIUrl":null,"url":null,"abstract":"We present a general conceptual framework for self-organized criticality (SOC), based on the recognition that it is nothing but the expression, ''unfolded'' in a suitable parameter space, of an underlying {\\em unstable} dynamical critical point. More precisely, SOC is shown to result from the tuning of the {\\em order parameter} to a vanishingly small, but {\\em positive} value, thus ensuring that the corresponding control parameter lies exactly at its critical value for the underlying transition. This clarifies the role and nature of the {\\em very slow driving rate} common to all systems exhibiting SOC. This mechanism is shown to apply to models of sandpiles, earthquakes, depinning, fractal growth and forest-fires, which have been proposed as examples of SOC.","PeriodicalId":139082,"journal":{"name":"arXiv: Adaptation and Self-Organizing Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/jp1:1995129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82

Abstract

We present a general conceptual framework for self-organized criticality (SOC), based on the recognition that it is nothing but the expression, ''unfolded'' in a suitable parameter space, of an underlying {\em unstable} dynamical critical point. More precisely, SOC is shown to result from the tuning of the {\em order parameter} to a vanishingly small, but {\em positive} value, thus ensuring that the corresponding control parameter lies exactly at its critical value for the underlying transition. This clarifies the role and nature of the {\em very slow driving rate} common to all systems exhibiting SOC. This mechanism is shown to apply to models of sandpiles, earthquakes, depinning, fractal growth and forest-fires, which have been proposed as examples of SOC.
将自组织临界映射到临界
我们提出了自组织临界性(SOC)的一般概念框架,基于认识到它只不过是在合适的参数空间中“展开”的潜在{\em不稳定}动态临界点的表达式。更准确地说,SOC是通过将{\em序参数}调整到一个非常小但{\em正}的值而产生的,从而确保相应的控制参数正好位于底层转换的临界值。这阐明了所有显示SOC的系统共同的{非常慢的驱动速率}的作用和性质。这一机制已被证明适用于沙堆、地震、脱屑、分形生长和森林火灾等模型,这些模型已被作为有机碳的例子提出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信