Expected likelihood estimation: Asymptotic properties for "stochastic" complex Gaussian models

Y. Abramovich, B.A. Johnson
{"title":"Expected likelihood estimation: Asymptotic properties for \"stochastic\" complex Gaussian models","authors":"Y. Abramovich, B.A. Johnson","doi":"10.1109/CAMSAP.2007.4497958","DOIUrl":null,"url":null,"abstract":"Expected likelihood estimation allows for the \"quality assessment\" of potential parameter estimates based on the likelihood ratio (LR) of the covariance matrix model constructed with parameter estimates. A solution is considered acceptable and further iterative refinement of the estimation process is terminated when the observed LR is statistically as good as the LR of the unknown true solution. We derive the asymptotic performance of expected likelihood and show it has a larger average error than the Cramer-Rao bound and is therefore not technically efficient. However, the degradation in the error is fixed, relatively small, and a function of the dimension of the data vector M, so expected likelihood can be used to impose useful statistical bounds on the likelihood function (LF) value.","PeriodicalId":220687,"journal":{"name":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2007.4497958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Expected likelihood estimation allows for the "quality assessment" of potential parameter estimates based on the likelihood ratio (LR) of the covariance matrix model constructed with parameter estimates. A solution is considered acceptable and further iterative refinement of the estimation process is terminated when the observed LR is statistically as good as the LR of the unknown true solution. We derive the asymptotic performance of expected likelihood and show it has a larger average error than the Cramer-Rao bound and is therefore not technically efficient. However, the degradation in the error is fixed, relatively small, and a function of the dimension of the data vector M, so expected likelihood can be used to impose useful statistical bounds on the likelihood function (LF) value.
期望似然估计:“随机”复高斯模型的渐近性质
期望似然估计允许基于参数估计构建的协方差矩阵模型的似然比(LR)对潜在参数估计进行“质量评估”。当观测到的LR在统计上与未知真解的LR一样好时,一个解决方案被认为是可接受的,并且估计过程的进一步迭代细化被终止。我们推导了期望似然的渐近性能,并表明它具有比Cramer-Rao界更大的平均误差,因此在技术上不是有效的。然而,误差的退化是固定的,相对较小,并且是数据向量M维的函数,因此期望似然可以用来对似然函数(LF)值施加有用的统计界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信