Confidence complexity of computer algorithms

A. Kiktenko, M. Lunkovskiy, K. Nikiforov
{"title":"Confidence complexity of computer algorithms","authors":"A. Kiktenko, M. Lunkovskiy, K. Nikiforov","doi":"10.1109/EMISSION.2014.6893971","DOIUrl":null,"url":null,"abstract":"A statistical research of an algorithm complexity as a random value was carried out via numerical experimentation using parallel computation. For a segment of input data sizes point characteristics for this random value and its confidence interval are obtained. Confidence complexity function value based on gamma-distribution is determined. The following result have been obtained: the used criteria are adequate for predicting the mean execution time and its confidence intervals for given input types.","PeriodicalId":314830,"journal":{"name":"2014 2nd 2014 2nd International Conference on Emission Electronics (ICEE)","volume":"3 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 2nd 2014 2nd International Conference on Emission Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMISSION.2014.6893971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A statistical research of an algorithm complexity as a random value was carried out via numerical experimentation using parallel computation. For a segment of input data sizes point characteristics for this random value and its confidence interval are obtained. Confidence complexity function value based on gamma-distribution is determined. The following result have been obtained: the used criteria are adequate for predicting the mean execution time and its confidence intervals for given input types.
计算机算法的置信度复杂度
通过并行计算的数值实验,对算法复杂度作为随机值进行了统计研究。对于一段输入数据大小,得到该随机值的点特征及其置信区间。确定了基于γ分布的置信复杂度函数值。得到了以下结果:所使用的标准足以预测给定输入类型的平均执行时间及其置信区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信