Modelling Non‐homogeneous Dynamic Bayesian Networks with Piecewise Linear Regression Models

M. Grzegorczyk, D. Husmeier
{"title":"Modelling Non‐homogeneous Dynamic Bayesian Networks with Piecewise Linear Regression Models","authors":"M. Grzegorczyk, D. Husmeier","doi":"10.1002/9781119487845.ch32","DOIUrl":null,"url":null,"abstract":"In statistical genomics and systems biology non-homogeneous dynamic Bayesian networks (NH-DBNs) have become an important tool for learning regulatory networks and signalling pathways from post-genomic data, such as gene expression time series. This chapter gives an overview of various state-of-the-art NH-DBN models with a variety of features. All NH-DBNs, presented here, have in common that they are Bayesian models that combine linear regression with multiple changepoint processes. The NH-DBN models can be used for learning the network structures of time-varying regulatory processes from data, where the regulatory interactions are subject to temporal change. We conclude this chapter with an illustration of the methodology on two applications, related to morphogenesis in Drosophila and synthetic biology in yeast.","PeriodicalId":216924,"journal":{"name":"Handbook of Statistical Genomics","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Statistical Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119487845.ch32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In statistical genomics and systems biology non-homogeneous dynamic Bayesian networks (NH-DBNs) have become an important tool for learning regulatory networks and signalling pathways from post-genomic data, such as gene expression time series. This chapter gives an overview of various state-of-the-art NH-DBN models with a variety of features. All NH-DBNs, presented here, have in common that they are Bayesian models that combine linear regression with multiple changepoint processes. The NH-DBN models can be used for learning the network structures of time-varying regulatory processes from data, where the regulatory interactions are subject to temporal change. We conclude this chapter with an illustration of the methodology on two applications, related to morphogenesis in Drosophila and synthetic biology in yeast.
用分段线性回归模型建模非齐次动态贝叶斯网络
在统计基因组学和系统生物学中,非同质动态贝叶斯网络(nh - dbn)已经成为从基因表达时间序列等后基因组数据中学习调控网络和信号通路的重要工具。本章概述了各种具有各种特征的最先进的NH-DBN模型。这里介绍的所有nh - dbn都有一个共同点,即它们是将线性回归与多个变点过程相结合的贝叶斯模型。NH-DBN模型可用于从数据中学习时变调节过程的网络结构,其中调节相互作用受时间变化的影响。我们在本章的最后以两种应用的方法为例,这两种应用与果蝇的形态发生和酵母的合成生物学有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信