SamMatch: a flexible and efficient sampling-based image retrieval technique for large image databases

K. Hua, Khanh Vu, Jung-Hwan Oh
{"title":"SamMatch: a flexible and efficient sampling-based image retrieval technique for large image databases","authors":"K. Hua, Khanh Vu, Jung-Hwan Oh","doi":"10.1145/319463.319610","DOIUrl":null,"url":null,"abstract":"The rapid growth of digital image data increases the need for efficient and effective image retrieval systems. Such systems should provide functionality that tailors to the user's need at the query time. In this paper, we propose a new image retrieval technique that allows users to control the relevantness of the results. For each image, the color contents of its regions are captured and used to compute similarity. Various factors, assigned automatically or by the user, allow high recall and precision to be obtained. We implemented the proposed technique for a large database of 16,000 images. Our experimental results show that this technique is not only space-time efficient but also more effective than recently proposed color histogram techniques.","PeriodicalId":265329,"journal":{"name":"MULTIMEDIA '99","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MULTIMEDIA '99","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/319463.319610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

The rapid growth of digital image data increases the need for efficient and effective image retrieval systems. Such systems should provide functionality that tailors to the user's need at the query time. In this paper, we propose a new image retrieval technique that allows users to control the relevantness of the results. For each image, the color contents of its regions are captured and used to compute similarity. Various factors, assigned automatically or by the user, allow high recall and precision to be obtained. We implemented the proposed technique for a large database of 16,000 images. Our experimental results show that this technique is not only space-time efficient but also more effective than recently proposed color histogram techniques.
SamMatch:一种灵活、高效的基于采样的大型图像数据库检索技术
数字图像数据的快速增长增加了对高效图像检索系统的需求。这样的系统应该在查询时提供适合用户需要的功能。在本文中,我们提出了一种新的图像检索技术,允许用户控制结果的相关性。对于每个图像,捕获其区域的颜色内容并用于计算相似度。各种因素,自动分配或由用户,允许获得高召回率和精度。我们在一个包含16,000张图像的大型数据库中实现了所提出的技术。实验结果表明,该技术不仅具有时空效率,而且比最近提出的颜色直方图技术更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信