LDP-Fed: federated learning with local differential privacy

Stacey Truex, Ling Liu, Ka-Ho Chow, M. E. Gursoy, Wenqi Wei
{"title":"LDP-Fed: federated learning with local differential privacy","authors":"Stacey Truex, Ling Liu, Ka-Ho Chow, M. E. Gursoy, Wenqi Wei","doi":"10.1145/3378679.3394533","DOIUrl":null,"url":null,"abstract":"This paper presents LDP-Fed, a novel federated learning system with a formal privacy guarantee using local differential privacy (LDP). Existing LDP protocols are developed primarily to ensure data privacy in the collection of single numerical or categorical values, such as click count in Web access logs. However, in federated learning model parameter updates are collected iteratively from each participant and consist of high dimensional, continuous values with high precision (10s of digits after the decimal point), making existing LDP protocols inapplicable. To address this challenge in LDP-Fed, we design and develop two novel approaches. First, LDP-Fed's LDP Module provides a formal differential privacy guarantee for the repeated collection of model training parameters in the federated training of large-scale neural networks over multiple individual participants' private datasets. Second, LDP-Fed implements a suite of selection and filtering techniques for perturbing and sharing select parameter updates with the parameter server. We validate our system deployed with a condensed LDP protocol in training deep neural networks on public data. We compare this version of LDP-Fed, coined CLDP-Fed, with other state-of-the-art approaches with respect to model accuracy, privacy preservation, and system capabilities.","PeriodicalId":268360,"journal":{"name":"Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking","volume":"311 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"205","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third ACM International Workshop on Edge Systems, Analytics and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3378679.3394533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 205

Abstract

This paper presents LDP-Fed, a novel federated learning system with a formal privacy guarantee using local differential privacy (LDP). Existing LDP protocols are developed primarily to ensure data privacy in the collection of single numerical or categorical values, such as click count in Web access logs. However, in federated learning model parameter updates are collected iteratively from each participant and consist of high dimensional, continuous values with high precision (10s of digits after the decimal point), making existing LDP protocols inapplicable. To address this challenge in LDP-Fed, we design and develop two novel approaches. First, LDP-Fed's LDP Module provides a formal differential privacy guarantee for the repeated collection of model training parameters in the federated training of large-scale neural networks over multiple individual participants' private datasets. Second, LDP-Fed implements a suite of selection and filtering techniques for perturbing and sharing select parameter updates with the parameter server. We validate our system deployed with a condensed LDP protocol in training deep neural networks on public data. We compare this version of LDP-Fed, coined CLDP-Fed, with other state-of-the-art approaches with respect to model accuracy, privacy preservation, and system capabilities.
LDP-Fed:具有局部差分隐私的联邦学习
本文提出了一种利用局部差分隐私(LDP)实现形式隐私保证的新型联邦学习系统LDP- fed。现有的LDP协议主要是为了确保单个数值或分类值集合中的数据隐私,例如Web访问日志中的点击计数。然而,在联邦学习模型中,参数更新是从每个参与者迭代地收集的,并且由高精度的高维连续值(小数点后的10位数)组成,使得现有的LDP协议不适用。为了解决LDP-Fed中的这一挑战,我们设计并开发了两种新颖的方法。首先,LDP- fed的LDP模块为大规模神经网络在多个个体参与者私有数据集上的联合训练中模型训练参数的重复收集提供了正式的差分隐私保证。其次,LDP-Fed实现了一套选择和过滤技术,用于干扰和与参数服务器共享选择参数更新。我们用压缩LDP协议在公共数据上训练深度神经网络来验证我们的系统。我们将这个版本的LDP-Fed(被称为CLDP-Fed)与其他最先进的方法在模型准确性、隐私保护和系统功能方面进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信