The Interpretation Of Supervised Neural Networks

P.J.G. Lisboa, A. Mehridehnavi, P. Martin
{"title":"The Interpretation Of Supervised Neural Networks","authors":"P.J.G. Lisboa, A. Mehridehnavi, P. Martin","doi":"10.1109/NNAT.1993.586048","DOIUrl":null,"url":null,"abstract":"Classij-ication of cancer and normal animal tissues is carried out on the basis of their 'H Nuclear Magnetic Resonance (NMR) spectra with neural networks trained by Back-Error Propagation (BEP), using two direrent costfunctions. A log-likelihood costfinction is shown to result in accurate out-of-sample generalisation with a smaller network than the usual Least Mean Squared (ZMS) error. ntejirst step in the interpretation of the operation of neural networks is to quantiJjr the relevance of the input parameters to the diagnosis of each tissue class. Two techniques for achieving this are investigated, namely the Jacobian method and a logarithmic sensitivity matrix. The latter is demonstrated to result in a clearer signature which is consistent across direrent network architectures and also broadly in agreement with conventional statistical correlations.","PeriodicalId":164805,"journal":{"name":"Workshop on Neural Network Applications and Tools","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Neural Network Applications and Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNAT.1993.586048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Classij-ication of cancer and normal animal tissues is carried out on the basis of their 'H Nuclear Magnetic Resonance (NMR) spectra with neural networks trained by Back-Error Propagation (BEP), using two direrent costfunctions. A log-likelihood costfinction is shown to result in accurate out-of-sample generalisation with a smaller network than the usual Least Mean Squared (ZMS) error. ntejirst step in the interpretation of the operation of neural networks is to quantiJjr the relevance of the input parameters to the diagnosis of each tissue class. Two techniques for achieving this are investigated, namely the Jacobian method and a logarithmic sensitivity matrix. The latter is demonstrated to result in a clearer signature which is consistent across direrent network architectures and also broadly in agreement with conventional statistical correlations.
监督神经网络的解释
癌症和正常动物组织的分类是基于它们的H核磁共振(NMR)光谱,使用两种不同的成本函数,使用反向误差传播(BEP)训练的神经网络进行的。对数似然代价函数被证明可以用比通常的最小均方误差(ZMS)更小的网络产生准确的样本外泛化。解释神经网络操作的第一步是量化输入参数与每个组织类别诊断的相关性。研究了实现这一目标的两种技术,即雅可比法和对数灵敏度矩阵。后者被证明可以产生更清晰的签名,该签名在不同的网络架构中是一致的,并且与传统的统计相关性也大致一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信