Runtime Estimation Model Based Graph Partitioning for Parallel Custom Instruction Selection

Chenglong Xiao, Shanshan Wang, Wanjun Liu, Haicheng Qu, Xinlin Wang
{"title":"Runtime Estimation Model Based Graph Partitioning for Parallel Custom Instruction Selection","authors":"Chenglong Xiao, Shanshan Wang, Wanjun Liu, Haicheng Qu, Xinlin Wang","doi":"10.1109/ISOCC47750.2019.9078512","DOIUrl":null,"url":null,"abstract":"Custom instruction selection is one of the most com- putationally difficult problems involved in the custom instruction identification for application-specific instruction-set processors. Most of existing research try to solve the custom instruction selection problem using sequential algorithms on a single compute node. Considering the high complexity of the problem, this paper proposes an efficient parallel method based on multi-depth graph partitioning for selecting custom instruction. Experimental result- s show that the proposed parallel custom instruction selection method outperforms two of the latest parallel methods and can achieve near-linear speedup.","PeriodicalId":113802,"journal":{"name":"2019 International SoC Design Conference (ISOCC)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC47750.2019.9078512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Custom instruction selection is one of the most com- putationally difficult problems involved in the custom instruction identification for application-specific instruction-set processors. Most of existing research try to solve the custom instruction selection problem using sequential algorithms on a single compute node. Considering the high complexity of the problem, this paper proposes an efficient parallel method based on multi-depth graph partitioning for selecting custom instruction. Experimental result- s show that the proposed parallel custom instruction selection method outperforms two of the latest parallel methods and can achieve near-linear speedup.
基于运行时估计模型的并行自定义指令选择图划分
自定义指令选择是应用特定指令集处理器自定义指令识别中最困难的计算机问题之一。现有的研究大多是在单个计算节点上使用顺序算法来解决自定义指令选择问题。针对该问题的高复杂性,提出了一种基于多深度图划分的高效并行自定义指令选择方法。实验结果表明,所提出的并行自定义指令选择方法优于两种最新的并行方法,并能实现近线性加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信