{"title":"Millimeter Wave Vehicular Communications: A Survey","authors":"Vutha Va, Takayuki Shimizu, G. Bansal, R. Heath","doi":"10.1561/1300000054","DOIUrl":null,"url":null,"abstract":"Future vehicles will require massive sensing capability. Leveraging only onboard sensors, though, is challenging in crowded environments where the sensing field-of-view is obstructed. One potential solution is to share sensor data among the vehicles and infrastructure. This has the benefits of providing vehicles with an enhanced field-of-view and also additional redundancy to provide more reliability in the sensor data. A main challenge in sharing sensor data is providing the high data rates required to exchange raw sensor data. The large spectral channels at millimeter wave mmWave frequencies provide a means of achieving much higher data rates. This monograph provides an overview of mmWave vehicular communication with an emphasis on results on channel measurements, the physical PHY layer, and the medium access control MAC layer. The main objective is to summarize key findings in each area, with special attention paid to identifying important topics of future research. In addition to surveying existing work, some new simulation results are also presented to give insights on the effect of directionality and blockage, which are the two distinguishing features of mmWave vehicular channels. A main conclusion of this monograph is that given the renewed interest in high rate vehicle connectivity, many challenges remain in the design of a mmWave vehicular network.","PeriodicalId":188056,"journal":{"name":"Found. Trends Netw.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"191","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Netw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/1300000054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 191
Abstract
Future vehicles will require massive sensing capability. Leveraging only onboard sensors, though, is challenging in crowded environments where the sensing field-of-view is obstructed. One potential solution is to share sensor data among the vehicles and infrastructure. This has the benefits of providing vehicles with an enhanced field-of-view and also additional redundancy to provide more reliability in the sensor data. A main challenge in sharing sensor data is providing the high data rates required to exchange raw sensor data. The large spectral channels at millimeter wave mmWave frequencies provide a means of achieving much higher data rates. This monograph provides an overview of mmWave vehicular communication with an emphasis on results on channel measurements, the physical PHY layer, and the medium access control MAC layer. The main objective is to summarize key findings in each area, with special attention paid to identifying important topics of future research. In addition to surveying existing work, some new simulation results are also presented to give insights on the effect of directionality and blockage, which are the two distinguishing features of mmWave vehicular channels. A main conclusion of this monograph is that given the renewed interest in high rate vehicle connectivity, many challenges remain in the design of a mmWave vehicular network.