Interactive Detection and Visualization of Ocean Carbon Regimes

Sweety Mohanty, Daniyal Kazempour, L. Patara, Peer Kröger
{"title":"Interactive Detection and Visualization of Ocean Carbon Regimes","authors":"Sweety Mohanty, Daniyal Kazempour, L. Patara, Peer Kröger","doi":"10.1145/3609956.3609973","DOIUrl":null,"url":null,"abstract":"Our research focuses on the detection of ocean carbon uptake regimes that are critical in the context of comprehending climate change. One observation among geoscientific data in Earth System Sciences is that the datasets often contain local and distinct statistical distributions posing a major challenge in applying clustering algorithms for data analysis. The use of global parameters in many clustering algorithms is often inadequate to capture such local distributions. In this study, we propose a novel tool to detect and visualize oceanic carbon uptake clusters. We implement a distance-variance selection method (augmented by BIC scores) on agglomerative hierarchical clustering constructed upon a regional multivariate linear regression model set. Instead of relying on a global distance, users can select the local distance and variance thresholds on our tool to detect the connections on the dendrograms that stand as potential clusters by considering both compactness and similarity.","PeriodicalId":274777,"journal":{"name":"Proceedings of the 18th International Symposium on Spatial and Temporal Data","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Symposium on Spatial and Temporal Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609956.3609973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Our research focuses on the detection of ocean carbon uptake regimes that are critical in the context of comprehending climate change. One observation among geoscientific data in Earth System Sciences is that the datasets often contain local and distinct statistical distributions posing a major challenge in applying clustering algorithms for data analysis. The use of global parameters in many clustering algorithms is often inadequate to capture such local distributions. In this study, we propose a novel tool to detect and visualize oceanic carbon uptake clusters. We implement a distance-variance selection method (augmented by BIC scores) on agglomerative hierarchical clustering constructed upon a regional multivariate linear regression model set. Instead of relying on a global distance, users can select the local distance and variance thresholds on our tool to detect the connections on the dendrograms that stand as potential clusters by considering both compactness and similarity.
海洋碳状态的交互检测与可视化
我们的研究重点是海洋碳吸收机制的检测,这在理解气候变化的背景下至关重要。在地球系统科学的地球科学数据中观察到的一个现象是,数据集通常包含局部和不同的统计分布,这对应用聚类算法进行数据分析提出了重大挑战。在许多聚类算法中使用全局参数通常不足以捕获这种局部分布。在这项研究中,我们提出了一种新的工具来检测和可视化海洋碳吸收簇。我们在区域多元线性回归模型集的基础上,对聚类分层聚类实现了一种距离方差选择方法(通过BIC分数增强)。用户可以在我们的工具上选择局部距离和方差阈值,而不是依赖于全局距离,通过考虑紧凑性和相似性来检测树形图上作为潜在聚类的连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信