Asymptotic mean ergodicity of average consensus estimators

Bryan Van Scoy, R. Freeman, K. Lynch
{"title":"Asymptotic mean ergodicity of average consensus estimators","authors":"Bryan Van Scoy, R. Freeman, K. Lynch","doi":"10.1109/ACC.2014.6859059","DOIUrl":null,"url":null,"abstract":"Dynamic average consensus estimators suitable for the decentralized computation of global averages of constant or slowly-varying local inputs include the proportional (P) and proportional-integral (PI) estimators. We analyze the convergence properties of these estimators when run on i.i.d. random graphs which are connected and balanced on average, but need not be connected or balanced at each time step. The statistics of the steady-state process are found using the Kronecker product covariance and an ergodic theorem is used to determine whether the steady-state process is mean ergodic. We show that for constant inputs the P estimator is asymptotically mean ergodic only for systems with non-zero forgetting factor which do not have zero steady-state error on average. The PI estimator has both the asymptotic mean ergodicity property and zero steady-state error in expectation for constant inputs independent of initial conditions, proving that the time-averaged output of each agent robustly converges to the correct average.","PeriodicalId":369729,"journal":{"name":"2014 American Control Conference","volume":"905 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2014.6859059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Dynamic average consensus estimators suitable for the decentralized computation of global averages of constant or slowly-varying local inputs include the proportional (P) and proportional-integral (PI) estimators. We analyze the convergence properties of these estimators when run on i.i.d. random graphs which are connected and balanced on average, but need not be connected or balanced at each time step. The statistics of the steady-state process are found using the Kronecker product covariance and an ergodic theorem is used to determine whether the steady-state process is mean ergodic. We show that for constant inputs the P estimator is asymptotically mean ergodic only for systems with non-zero forgetting factor which do not have zero steady-state error on average. The PI estimator has both the asymptotic mean ergodicity property and zero steady-state error in expectation for constant inputs independent of initial conditions, proving that the time-averaged output of each agent robustly converges to the correct average.
平均一致估计量的渐近平均遍历性
适用于恒定或缓慢变化的局部输入的全局平均的分散计算的动态平均一致性估计包括比例(P)和比例积分(PI)估计。我们分析了这些估计器在随机图上的收敛性,这些随机图是平均连接和平衡的,但在每个时间步不需要连接或平衡。利用Kronecker积协方差找到了稳态过程的统计量,并利用遍历定理确定了稳态过程是否为平均遍历。我们证明了对于恒定输入,P估计量仅对于具有非零遗忘因子且平均稳态误差不为零的系统是渐近平均遍历的。对于独立于初始条件的恒定输入,PI估计量既具有渐近均值遍历性,又具有零稳态期望误差,证明了每个智能体的时间平均输出鲁棒收敛到正确的平均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信