Decomposing Quantified Conjunctive (or Disjunctive) Formulas

Hubie Chen, V. Dalmau
{"title":"Decomposing Quantified Conjunctive (or Disjunctive) Formulas","authors":"Hubie Chen, V. Dalmau","doi":"10.1109/LICS.2012.31","DOIUrl":null,"url":null,"abstract":"Model checking-deciding if a logical sentence holds on a structure-is a basic computational task that is well-known to be intractable in general. For first-order logic on finite structures, it is PSPACE-complete, and the natural evaluation algorithm exhibits exponential dependence on the formula. We study model checking on the quantified conjunctive fragment of first-order logic, namely, prenex sentences having a purely conjunctive quantifier-free part. Following a number of works, we associate a graph to the quantifier-free part; each sentence then induces a prefixed graph, a quantifier prefix paired with a graph on its variables. We give a comprehensive classification of the sets of prefixed graphs on which model checking is tractable, based on a novel generalization of treewidth, that generalizes and places into a unified framework a number of existing results.","PeriodicalId":407972,"journal":{"name":"2012 27th Annual IEEE Symposium on Logic in Computer Science","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 27th Annual IEEE Symposium on Logic in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2012.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

Model checking-deciding if a logical sentence holds on a structure-is a basic computational task that is well-known to be intractable in general. For first-order logic on finite structures, it is PSPACE-complete, and the natural evaluation algorithm exhibits exponential dependence on the formula. We study model checking on the quantified conjunctive fragment of first-order logic, namely, prenex sentences having a purely conjunctive quantifier-free part. Following a number of works, we associate a graph to the quantifier-free part; each sentence then induces a prefixed graph, a quantifier prefix paired with a graph on its variables. We give a comprehensive classification of the sets of prefixed graphs on which model checking is tractable, based on a novel generalization of treewidth, that generalizes and places into a unified framework a number of existing results.
分解量化合取(或析取)公式
模型检查——决定一个逻辑句子是否符合一个结构——是一项基本的计算任务,众所周知,它通常很难处理。对于有限结构上的一阶逻辑,它是pspace完全的,并且自然评价算法对该公式表现出指数依赖。我们研究了一阶逻辑的量词片段的模型检验,即具有纯无量词部分的连接词前置句。在一系列工作之后,我们将图与无量词部分联系起来;然后,每个句子引出一个带前缀的图,一个量词前缀与它的变量图配对。基于树宽度的一种新的推广,我们给出了一个综合分类的前缀图的集合,其中模型检查是可处理的,它将许多现有的结果推广并放置到一个统一的框架中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信