Exploiting Temporal and Inter-concept Co-occurrence Structure to Detect High-Level Features in Broadcast Videos

Ville Viitaniemi, Mats Sjöberg, M. Koskela, Jorma T. Laaksonen
{"title":"Exploiting Temporal and Inter-concept Co-occurrence Structure to Detect High-Level Features in Broadcast Videos","authors":"Ville Viitaniemi, Mats Sjöberg, M. Koskela, Jorma T. Laaksonen","doi":"10.1109/WIAMIS.2008.50","DOIUrl":null,"url":null,"abstract":"In this paper the problem of detecting high-level features from video shots is studied. In particular, we explore the possibility of taking advantage of temporal and interconcept co-occurrence patterns that the high-level features of a video sequence exhibit. Here we present two straightforward techniques for the task: N-gram models and clustering of temporal neighbourhoods. We demonstrate the usefulness of these techniques on data sets of the TRECVID high-level feature detection tasks of the years 2005-2007.","PeriodicalId":325635,"journal":{"name":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIAMIS.2008.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper the problem of detecting high-level features from video shots is studied. In particular, we explore the possibility of taking advantage of temporal and interconcept co-occurrence patterns that the high-level features of a video sequence exhibit. Here we present two straightforward techniques for the task: N-gram models and clustering of temporal neighbourhoods. We demonstrate the usefulness of these techniques on data sets of the TRECVID high-level feature detection tasks of the years 2005-2007.
利用时间和概念间共现结构检测广播视频中的高级特征
本文研究了视频中高级特征的检测问题。特别是,我们探索了利用视频序列的高级特征所展示的时间和概念间共现模式的可能性。在这里,我们提出了两种简单的技术:N-gram模型和时间邻域聚类。我们展示了这些技术在2005-2007年TRECVID高级特征检测任务的数据集上的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信