Variational learning for quantum artificial neural networks

F. Tacchino, P. Barkoutsos, C. Macchiavello, D. Gerace, I. Tavernelli, D. Bajoni
{"title":"Variational learning for quantum artificial neural networks","authors":"F. Tacchino, P. Barkoutsos, C. Macchiavello, D. Gerace, I. Tavernelli, D. Bajoni","doi":"10.1109/QCE49297.2020.00026","DOIUrl":null,"url":null,"abstract":"In the last few years, quantum computing and machine learning fostered rapid developments in their respective areas of application, introducing new perspectives on how information processing systems can be realized and programmed. The rapidly growing field of Quantum Machine Learning aims at bringing together these two ongoing revolutions. Here we first review a series of recent works describing the implementation of artificial neurons and feed-forward neural networks on quantum processors. We then present an original realization of efficient individual quantum nodes based on variational unsampling protocols. While keeping full compatibility with the overall memory-efficient feed-forward architecture, such a construction effectively reduces the quantum circuit depth required to determine the activation probability of single neurons upon input of the relevant data-encoding quantum states. This suggests a viable approach towards the use of quantum neural networks for pattern classification on near-term quantum hardware.","PeriodicalId":224038,"journal":{"name":"2020 IEEE International Conference on Quantum Computing and Engineering (QCE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Quantum Computing and Engineering (QCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QCE49297.2020.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

In the last few years, quantum computing and machine learning fostered rapid developments in their respective areas of application, introducing new perspectives on how information processing systems can be realized and programmed. The rapidly growing field of Quantum Machine Learning aims at bringing together these two ongoing revolutions. Here we first review a series of recent works describing the implementation of artificial neurons and feed-forward neural networks on quantum processors. We then present an original realization of efficient individual quantum nodes based on variational unsampling protocols. While keeping full compatibility with the overall memory-efficient feed-forward architecture, such a construction effectively reduces the quantum circuit depth required to determine the activation probability of single neurons upon input of the relevant data-encoding quantum states. This suggests a viable approach towards the use of quantum neural networks for pattern classification on near-term quantum hardware.
量子人工神经网络的变分学习
在过去的几年中,量子计算和机器学习在各自的应用领域促进了快速发展,为如何实现和编程信息处理系统引入了新的视角。快速发展的量子机器学习领域旨在将这两场正在进行的革命结合起来。在这里,我们首先回顾了一系列描述在量子处理器上实现人工神经元和前馈神经网络的最新工作。然后,我们提出了一种基于变分反采样协议的高效单个量子节点的原始实现。在保持与整体高效存储前馈架构完全兼容的同时,这种结构有效地减少了在输入相关数据编码量子态时确定单个神经元激活概率所需的量子电路深度。这表明了在近期量子硬件上使用量子神经网络进行模式分类的可行方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信