Development of an Open-Source Autonomous CFD Meta-Modeling Environment for Small-Scale Combustor Optimization – Part I

A. Briones, B. Rankin
{"title":"Development of an Open-Source Autonomous CFD Meta-Modeling Environment for Small-Scale Combustor Optimization – Part I","authors":"A. Briones, B. Rankin","doi":"10.1115/gt2022-78581","DOIUrl":null,"url":null,"abstract":"\n This work presents an open-source autonomous CFD meta-modeling environment (OpenACME) for small-scale combustor design optimization in a deterministic and continuous design space. OpenACME couples several object-oriented programming open-source codes for conjugate-heat transfer, steady-state, multiphase incompressible RANS CFD-assisted engineering design meta-modeling. There are fifteen design variables. Non-parametric rank regression (NPRR), global sensitivity analyses (GSA), and single-objective (SOO) optimization strategies are evaluated. The Euclidean distance (single-objective criterion) between a design point and the utopic point is based on the multi-objective criteria: combustion efficiency (η) maximization and pattern factor (PF), critical liner area factor (Acriticol), and total pressure loss (TPL) minimization. The SOO approach conducts Latin Hypercube Sampling for reacting flow CFD for subsequent local constraint optimization by linear interpolation. The local optimization successfully improves the initial design condition. The SOO approach is useful for guiding the design and development of future gas turbine combustors. NPRR and GSA indicate that there are no leading-order design variables controlling η, PF, Acritical, and TPL. Therefore, interactions between design variables control these output metrics because the output design space is inherently non-smooth and nonlinear. In summary, OpenACME is developed and demonstrated to be a viable tool for combustor design meta-modeling and optimization studies.","PeriodicalId":121836,"journal":{"name":"Volume 3A: Combustion, Fuels, and Emissions","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3A: Combustion, Fuels, and Emissions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2022-78581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents an open-source autonomous CFD meta-modeling environment (OpenACME) for small-scale combustor design optimization in a deterministic and continuous design space. OpenACME couples several object-oriented programming open-source codes for conjugate-heat transfer, steady-state, multiphase incompressible RANS CFD-assisted engineering design meta-modeling. There are fifteen design variables. Non-parametric rank regression (NPRR), global sensitivity analyses (GSA), and single-objective (SOO) optimization strategies are evaluated. The Euclidean distance (single-objective criterion) between a design point and the utopic point is based on the multi-objective criteria: combustion efficiency (η) maximization and pattern factor (PF), critical liner area factor (Acriticol), and total pressure loss (TPL) minimization. The SOO approach conducts Latin Hypercube Sampling for reacting flow CFD for subsequent local constraint optimization by linear interpolation. The local optimization successfully improves the initial design condition. The SOO approach is useful for guiding the design and development of future gas turbine combustors. NPRR and GSA indicate that there are no leading-order design variables controlling η, PF, Acritical, and TPL. Therefore, interactions between design variables control these output metrics because the output design space is inherently non-smooth and nonlinear. In summary, OpenACME is developed and demonstrated to be a viable tool for combustor design meta-modeling and optimization studies.
小型燃烧室优化的开源自主CFD元建模环境的开发-第一部分
这项工作提出了一个开源的自主CFD元建模环境(OpenACME),用于在确定性和连续设计空间中进行小规模燃烧室设计优化。OpenACME耦合了几个面向对象的编程开源代码,用于共轭传热、稳态、多相不可压缩RANS cfd辅助工程设计元建模。这里有15个设计变量。评估了非参数秩回归(NPRR)、全局敏感性分析(GSA)和单目标优化策略。设计点和理想点之间的欧几里得距离(单目标准则)基于多目标准则:燃烧效率(η)最大化和模式因子(PF),临界线性面积因子(Acriticol)和总压损失(TPL)最小化。SOO方法对反应流CFD进行拉丁超立方体采样,然后通过线性插值进行局部约束优化。局部优化成功地改善了初始设计条件。SOO方法对指导未来燃气轮机燃烧室的设计和开发是有用的。NPRR和GSA表明,不存在控制η、PF、critical和TPL的序次设计变量。因此,设计变量之间的相互作用控制着这些输出指标,因为输出设计空间本质上是非光滑和非线性的。总之,OpenACME被开发并证明是燃烧器设计元建模和优化研究的可行工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信