Fusion of stereo and structure from motion for enhancing PatchMatch stereo

Claudiu Decean, S. Nedevschi
{"title":"Fusion of stereo and structure from motion for enhancing PatchMatch stereo","authors":"Claudiu Decean, S. Nedevschi","doi":"10.1109/ICCP.2015.7312627","DOIUrl":null,"url":null,"abstract":"The main issues with classic disparity estimation methods are the limitations of cost fitting for estimating subpixel disparity values and the frequent violations of the fronto-parallel assumption during support window matching. Modern stereo correspondence algorithms model the scene as a collection of 3D planes and estimate the real-valued parameters of each plane in order to obtain a more accurate disparity map. Such an algorithm is PatchMatch stereo that overcomes the problem of searching in an infinite, high dimensional solution space by efficiently traversing the space based on the assumption that planes are similar in a neighborhood region. This work presents a method that integrates structure from motion information with stereo for increasing the robustness of the original PatchMatch stereo method on difficult scenarios. Evaluations of our method on the HCI and Kitti datasets show that our method returns an accurate, denser disparity map.","PeriodicalId":158453,"journal":{"name":"2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCP.2015.7312627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The main issues with classic disparity estimation methods are the limitations of cost fitting for estimating subpixel disparity values and the frequent violations of the fronto-parallel assumption during support window matching. Modern stereo correspondence algorithms model the scene as a collection of 3D planes and estimate the real-valued parameters of each plane in order to obtain a more accurate disparity map. Such an algorithm is PatchMatch stereo that overcomes the problem of searching in an infinite, high dimensional solution space by efficiently traversing the space based on the assumption that planes are similar in a neighborhood region. This work presents a method that integrates structure from motion information with stereo for increasing the robustness of the original PatchMatch stereo method on difficult scenarios. Evaluations of our method on the HCI and Kitti datasets show that our method returns an accurate, denser disparity map.
融合立体声和运动结构,增强PatchMatch立体声效果
经典视差估计方法存在的主要问题是代价拟合在估计亚像素视差值时存在局限性,以及在支持窗匹配过程中经常违反前并行假设。现代立体对应算法将场景建模为三维平面的集合,并估计每个平面的实值参数,以获得更精确的视差图。这种算法是PatchMatch立体,它克服了在无限高维解空间中搜索的问题,基于相邻区域中平面相似的假设,通过有效地遍历空间。本文提出了一种将运动信息与立体结构相结合的方法,以提高原始PatchMatch立体方法在困难场景下的鲁棒性。对我们的方法在HCI和Kitti数据集上的评估表明,我们的方法返回一个准确的、更密集的视差图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信