Towards Robust Layered Learning

W. Richert, B. Kleinjohann
{"title":"Towards Robust Layered Learning","authors":"W. Richert, B. Kleinjohann","doi":"10.1109/CONIELECOMP.2007.111","DOIUrl":null,"url":null,"abstract":"In his landmark work introducing layered learning Stone presented a new way of handling complex application domains suitable especially for mobile robots. We extend his framework by introducing robust layered learning- a framework that is able to handle system and environmental changes at every layer. We present first results of a lower level implementation of such a framework for mobile robots and discuss how all available sources of information regarding unforeseen changes can be integrated in such a framework in order to reach maximal robustness.","PeriodicalId":288478,"journal":{"name":"Third International Conference on Autonomic and Autonomous Systems (ICAS'07)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Autonomic and Autonomous Systems (ICAS'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONIELECOMP.2007.111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In his landmark work introducing layered learning Stone presented a new way of handling complex application domains suitable especially for mobile robots. We extend his framework by introducing robust layered learning- a framework that is able to handle system and environmental changes at every layer. We present first results of a lower level implementation of such a framework for mobile robots and discuss how all available sources of information regarding unforeseen changes can be integrated in such a framework in order to reach maximal robustness.
迈向稳健的分层学习
在他的里程碑式的工作中,引入了分层学习,Stone提出了一种处理复杂应用领域的新方法,特别适合移动机器人。我们通过引入健壮的分层学习来扩展他的框架——一个能够在每一层处理系统和环境变化的框架。我们提出了移动机器人框架的较低层次实现的第一个结果,并讨论了如何将有关不可预见变化的所有可用信息源集成到这样的框架中,以达到最大的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信