Photon-avalanche-like upconversion in NdAl3(BO3)4 nanoparticles excited at 1064 nm

arXiv: Optics Pub Date : 2020-08-09 DOI:10.1063/5.0024619
Jefferson F. da Silva, Rodrigo F. da Silva, E. P. Santos, L. Maia, A. Moura
{"title":"Photon-avalanche-like upconversion in NdAl3(BO3)4 nanoparticles excited at 1064 nm","authors":"Jefferson F. da Silva, Rodrigo F. da Silva, E. P. Santos, L. Maia, A. Moura","doi":"10.1063/5.0024619","DOIUrl":null,"url":null,"abstract":"We report efficient non-resonant ground state excitation at 1064 nm of trivalent neodymium (Nd$^{3+}$) ions in stoichiometric neodymium aluminum borate NdAl$_3$(BO$_3$)$_4$ nanoparticles, which are crystalline and, besides the large content of Nd$^{3+}$ ions, present excellent photoluminescence properties. Up-conversions (UCs) were observed and the energy pathways identified, as starting by multi-phonon assisted ground state absorption ($^4$I$_{9/2}$-$^4$F$_{3/2}$) and excited state absorption ($^4$I$_{11/2}$-$^4$F$_{3/2}$) with the population of the $^4$I$_{11/2}$ level by thermal coupling with the ground state. The excited state $^4$I$_{11/2}$ is also populated by relaxations of the Nd$^{3+}$ ions increasing the population of the $^4$F$_{3/2}$ level. Cross-relaxation among two Nd$^{3+}$ ions ($^4$F$_{3/2}$,$^4$I$_{9/2}$)-($^4$I$_{15/2}$,$^4$I$_{15/2}$) with subsequent phonon emission leads to two ions at the $^4$I$_{11/2}$ level every iteration triggering a photon avalanche mechanism which greatly enhances the efficiency of the UCs. Ladder thermal excitation $^4$F$_{3/2}$-[$^4$F$_{5/2}$,$^2$H$_{9/2}$]-[$^4$F$_{7/2}$,$^4$S$_{3/2}$]-$^4$F$_{9/2}$ was achieved, and the ground state relaxation from these levels provided emission at 880 nm, 810 nm, 750 nm, and 690 nm, respectively. Energy transfer UCs (Auger) between Nd$^{3+}$ ions at the $^4$F$_{3/2}$ level allowed the population of the [$^2$G$_{3/2}$,$^4$G$_{7/2}$] from which relaxations to the $^4$I$_{9/2}$, $^4$I$_{11/2}$, and $^4$I$_{13/2}$ states provided emissions around 536 nm, 600 nm, and 660 nm, respectively. Associated with the nonradiative relaxations, we observed the heating of the nanoparticles (22 {\\deg}C to 240 {\\deg}C) with subsequent thermal enhancement of the frequency UCs due to the redistribution of population among coupled energy levels of the Nd$^{3+}$ ions.","PeriodicalId":304443,"journal":{"name":"arXiv: Optics","volume":"5 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0024619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

We report efficient non-resonant ground state excitation at 1064 nm of trivalent neodymium (Nd$^{3+}$) ions in stoichiometric neodymium aluminum borate NdAl$_3$(BO$_3$)$_4$ nanoparticles, which are crystalline and, besides the large content of Nd$^{3+}$ ions, present excellent photoluminescence properties. Up-conversions (UCs) were observed and the energy pathways identified, as starting by multi-phonon assisted ground state absorption ($^4$I$_{9/2}$-$^4$F$_{3/2}$) and excited state absorption ($^4$I$_{11/2}$-$^4$F$_{3/2}$) with the population of the $^4$I$_{11/2}$ level by thermal coupling with the ground state. The excited state $^4$I$_{11/2}$ is also populated by relaxations of the Nd$^{3+}$ ions increasing the population of the $^4$F$_{3/2}$ level. Cross-relaxation among two Nd$^{3+}$ ions ($^4$F$_{3/2}$,$^4$I$_{9/2}$)-($^4$I$_{15/2}$,$^4$I$_{15/2}$) with subsequent phonon emission leads to two ions at the $^4$I$_{11/2}$ level every iteration triggering a photon avalanche mechanism which greatly enhances the efficiency of the UCs. Ladder thermal excitation $^4$F$_{3/2}$-[$^4$F$_{5/2}$,$^2$H$_{9/2}$]-[$^4$F$_{7/2}$,$^4$S$_{3/2}$]-$^4$F$_{9/2}$ was achieved, and the ground state relaxation from these levels provided emission at 880 nm, 810 nm, 750 nm, and 690 nm, respectively. Energy transfer UCs (Auger) between Nd$^{3+}$ ions at the $^4$F$_{3/2}$ level allowed the population of the [$^2$G$_{3/2}$,$^4$G$_{7/2}$] from which relaxations to the $^4$I$_{9/2}$, $^4$I$_{11/2}$, and $^4$I$_{13/2}$ states provided emissions around 536 nm, 600 nm, and 660 nm, respectively. Associated with the nonradiative relaxations, we observed the heating of the nanoparticles (22 {\deg}C to 240 {\deg}C) with subsequent thermal enhancement of the frequency UCs due to the redistribution of population among coupled energy levels of the Nd$^{3+}$ ions.
1064 nm激发下NdAl3(BO3)4纳米粒子的光子雪崩样上转换
我们报道了在1064 nm的非共振基态激发下,化学计量硼酸钕铝NdAl$_3$(BO$_3$)$_4$纳米粒子中三价钕(Nd$^{3+}$)离子的有效激发,该纳米粒子是晶体状的,除了含有大量Nd$^{3+}$离子外,还具有优异的光致发光性能。观察到上转换(UCs),并确定了多声子辅助的基态吸收($^4$I$_{9/2}$-$^4$F$_{3/2}$)和激发态吸收($^4$I$_{11/2}$-$^4$F$_{3/2}$),通过与基态的热耦合达到$^4$I$_{11/2}$能级。激发态$^4$I$_{11/2}$也被Nd$^{3+}$离子的弛豫填充,增加了$^4$F$_{3/2}$能级的填充。两个Nd$^{3+}$离子($^4$F$ $ {3/2}$,$^4$I$ $ {9/2}$)-($^4$I$ $ {15/2}$,$^4$I$ ${15/2}$)之间的交叉弛豫与随后的声子发射导致每次迭代产生$^4$I$ ${11/2}$两个离子,从而触发光子雪崩机制,大大提高了UCs的效率。得到阶梯热激发$^4$F$_{3/2}$-[$^4$F$_{5/2}$,$^2$H$_{9/2}$]-[$^4$F$_{7/2}$,$^4$S$_{3/2}$]-$^4$F$_{9/2}$,这些能级的基态弛化分别在880 nm, 810 nm, 750 nm和690 nm处产生发射。在$^4$F$ ${3/2}$能级上的Nd$ ${3+}$离子之间的能量转移ucer (Auger)允许[$^2$G$ $ {3/2}$,$^4$G$ ${7/2}$]的居群,从这些居群弛豫到$^4$I$ $ {9/2}$, $^4$I$ ${11/2}$和$^4$I$ ${13/2}$分别提供约536 nm, 600 nm和660 nm的辐射。与非辐射弛豫相关的是,我们观察到纳米粒子的加热(22{\°}C至240{\°}C),由于Nd$^{3+}$离子在耦合能级之间的重新分配,导致频率UCs的热增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信