Exploration of the robustness and generalizability of the additive factors model

Tomáš Effenberger, Radek Pelánek, Jaroslav Čechák
{"title":"Exploration of the robustness and generalizability of the additive factors model","authors":"Tomáš Effenberger, Radek Pelánek, Jaroslav Čechák","doi":"10.1145/3375462.3375491","DOIUrl":null,"url":null,"abstract":"Additive Factors Model is a widely used student model, which is primarily used for refining knowledge component models (Q-matrices). We explore the robustness and generalizability of the model. We explicitly formulate simplifying assumptions that the model makes and we discuss methods for visualizing learning curves based on the model. We also report on an application of the model to data from a learning system for introductory programming; these experiments illustrate possibly misleading interpretation of model results due to differences in item difficulty. Overall, our results show that greater care has to be taken in the application of the model and in the interpretation of results obtained with the model.","PeriodicalId":355800,"journal":{"name":"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge","volume":"13 15","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375462.3375491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Additive Factors Model is a widely used student model, which is primarily used for refining knowledge component models (Q-matrices). We explore the robustness and generalizability of the model. We explicitly formulate simplifying assumptions that the model makes and we discuss methods for visualizing learning curves based on the model. We also report on an application of the model to data from a learning system for introductory programming; these experiments illustrate possibly misleading interpretation of model results due to differences in item difficulty. Overall, our results show that greater care has to be taken in the application of the model and in the interpretation of results obtained with the model.
探讨加性因子模型的稳健性和泛化性
加性因子模型是一种广泛使用的学生模型,主要用于提炼知识成分模型(q矩阵)。探讨了模型的鲁棒性和泛化性。我们明确地制定了简化模型的假设,并讨论了基于模型可视化学习曲线的方法。我们还报告了该模型在入门编程学习系统数据中的应用;这些实验说明,由于项目难度的差异,模型结果可能被误解。总的来说,我们的结果表明,在应用模型和解释用模型获得的结果时,必须更加小心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信